首页|基于机器学习评价页岩油产能主控因素——以庆城油田西233区为例

基于机器学习评价页岩油产能主控因素——以庆城油田西233区为例

扫码查看
鄂尔多斯盆地页岩油气资源丰富,开发潜力巨大.基于地质工程一体化理念,针对庆城油田西233区内的15个平台共55口水平井,运用机器学习方法构建了页岩油水平井单井累产油量与其地质和工程参数的多元多重线性回归模型,并深入分析了各因素间的联合影响效应.研究发现,单井累产油量受地质与工程多方面因素的综合作用,且这些因素对产量的影响程度随开发进程而动态变化.在生产约15个月后,油井生产状态趋于稳定,此时构建的多元线性回归模型能够较好地预测单井产能,满足精度要求.产能主控因素研究结果表明地质因素中,对产油量影响最显著的是钻遇率,其次是油层段长、含油饱和度及地层系数;而工程因素则以加砂强度影响最大,其后依次为压裂段数、压裂簇密度、排量及进液强度.该研究明确了不同生产阶段下的地质工程因素对产量影响变化情况、单因素影响机理分析、主控因素优选,为优化压裂工艺参数配置及准确预测单井产能提供了重要理论依据与实践指导.
Evaluating the Dominant Factors Affecting Shale Oil Productivity Based on Machine Learning——A Case Study of West Area 233,Qingcheng Oilfield
The Ordos Basin is rich in shale oil and gas resources and has great development potential.Based on concept of geological engineering integration,this paper uses machine learning technology to construct a multiple linear regression model of the cumulative oil production of shale oil horizontal wells and their geological and engineering parameters for a total of 55 horizontal wells on 15 platforms in the West area 233 of Qingcheng Oilfield.The joint influence effects between various factors are analyzed in depth.Research has found that the cumulative oil production of a single well is influenced by a combination of geological and engineering factors,and the degree and direction of their impact on production vary dynamically with the development process.After about 15 months of production,the production status of the oil well tends to stabilize.At this time,the constructed multiple linear regression model can predict the single well production capacity well and meet the accuracy requirements.Among the geological factors,the drilling encounter rate has the most significant impact on oil production,followed by reservoir length,oil saturation,and formation coefficient;The engineering factors are most affected by the sand addition intensity,followed by the number of fracturing sections,fracturing cluster density,displacement,and inflow intensity.This study clarifies the changes in the impact of geological engineering factors on production under different production stages,analyzes the mechanism of single factor impact,and optimizes the main control factors,providing important theoretical basis and practical guidance for optimizing fracturing process parameter configuration and accurately predicting single well production capacity.

Qingcheng shale oilmachine learninggeological engineering parametersmain control factor analysis

齐银、李佳馨、陈强、涂志勇、赵国翔、韩学良

展开 >

中国石油长庆油田公司油气工艺研究院

中国石油长庆油田公司陇东油气开发分公司

庆城页岩油 机器学习 地质工程参数 主控因素分析

2024

钻采工艺
四川石油管理局钻采工艺技术研究院,西南油气田分公司采气工程研究院

钻采工艺

北大核心
影响因子:0.634
ISSN:1006-768X
年,卷(期):2024.47(6)