首页|基于统计指标的曲线桥支座脱空病害识别方法

基于统计指标的曲线桥支座脱空病害识别方法

扫码查看
为快速评估曲线连续梁桥支座健康状态,提出了基于时程统计指标的桥梁支座脱空病害识别方法.首先,提取行车激励下桥面测点加速度信号的20个时程统计指标,通过概率统计的方式,得出各统计指标的置信区间;其次,根据各时程统计指标对支座脱空的敏感程度不同,采用熵值法确定各统计指标的权重分配值;最后,根据各测点异常指标数计算损伤指数,综合判断测点附近支座是否出现脱空病害.为验证方法的有效性,以某3×25 m曲线连续梁桥为工程背景,建立车桥耦合动力学模型进行分析验证.结果表明:该方法可以准确识别脱空支座所在位置,并且可以有效识别较小的损伤;相比于中间支座脱空,时程统计指标对端支座脱空更为敏感.
Identification Method of Bearing Separation of Curved Girder Bridge Based on Statistics Indicator
In order to quickly assess the health status of curved continuous girder bridge bearings,a method for identifying bridge bearing separation is proposed based on time-history statistical indicators.Firstly,the 20 time-history statistical indicators of the acceleration signal of the bridge deck measurement point under driving excita-tion are extracted.Using probability statistics,the confidence interval for each statistical indicator is obtained.Then,the entropy method is used to determine the weight distribution value of each statistical index,according to the different sensitivity of each time-history statistical index to the bearing separation.Finally,the damage in-dex is calculated based on the number of abnormal indicators at each measuring point,and it is comprehensively judged whether the bearing separation near the measuring point.To verify the effectiveness of the method,a vehicle-bridge coupling dynamics model is established for analysis and verification using a 3×25 m curved con-tinuous girder bridge as the engineering background.The results show that this method can accurately identify the location of the damaged bearing,and can effectively identify minor damage.Compared with the middle bear-ing damage,the time-history statistical indicators is more sensitive to the end bearing damage.

damage identificationvehicle-bridge coupling modeltime history statistics indicatorbearing separation

朱劲松、鲁俊男、杨祥

展开 >

天津大学水利工程智能建设与运维全国重点实验室 天津,300350

天津大学滨海土木工程结构与安全教育部重点实验室 天津,300350

河北雄安荣乌高速公路有限公司 保定,071700

病害识别 车桥耦合模型 时程统计指标 支座脱空

国家自然科学基金河北省交通厅科技项目

52378310RW-202011

2024

振动、测试与诊断
南京航空航天大学 全国高校机械工程测试技术研究会

振动、测试与诊断

CSTPCD北大核心
影响因子:0.784
ISSN:1004-6801
年,卷(期):2024.44(2)
  • 16