首页|基于云理论及GG聚类的滚动轴承故障辨识方法

基于云理论及GG聚类的滚动轴承故障辨识方法

扫码查看
为了探讨不同特征对区分滚动轴承故障状态贡献的大小,在特征层面上使轴承的定性概念与定量数据建立关联,以达到敏感特征提取的目的,将云理论引入到滚动轴承的特征筛选中,并将所提方法结合GG(Gath-Geva,简称GG)聚类应用于滚动轴承的故障辨识.首先,对滤波消噪后的振动信号提取高维原始特征集,建立滚动轴承在不同运行状态下的云分布模型;然后,利用正向云发生器分别求出不同样本下各特征对轴承状态的确定度,设定阈值筛选原始特征集中对轴承运行状态贡献度大的特征,计算其出现的概率并作为权值,提出一种基于云理论加权特征选择方法,筛选出敏感特征集;最后,利用主成分分析(principal component analysis,简称PCA)对敏感特征集降维并输入至GG聚类中,完成故障辨识.实验结果表明,相较于传统的特征选择方法,所提算法在聚类评价指标及故障辨识率上具有明显的优势.
Method of Rolling Bearing Fault Identification Based on Cloud Theory and GG Clustering
In order to explore the contribution of different features to distinguish the fault states of rolling bear-ings,the goal is to extract sensitive features,which are associated with the qualitative concept.Cloud theory is introduced into the feature screening,and the proposed method is applied to the fault identification in combina-tion with Gath-Geva(GG)clustering.Firstly,Extracting the high-dimensional feature set from the noise reduc-tion vibration signal,which establishes cloud distribution model under different operating conditions.Then,the forward cloud generator is used to find out the determinacy of each feature on the bearing state under different samples respectively,a threshold is set to screen the features in the original feature set that contribute signifi-cantly to the bearing operating state,the probability of their occurrence is calculated and used as weights to pro-pose a cloud theory-based weighted feature selection method to screen the sensitive feature set.Finally,princi-pal component analysis(PCA)is used to reduce the feature set and input to GG clustering to complete the fault identification.Experimental results show that the proposed algorithm has obvious advantages over the traditional feature selection method in terms of clustering evaluation index and fault identification rate.

rolling bearingcloud theoryfeature selectionfeature weightingcertaintyGG clustering

刘强、赵荣珍、杨泽本

展开 >

兰州理工大学机电工程学院 兰州,730050

滚动轴承 云理论 特征选择 特征加权 确定度 GG聚类

国家自然科学基金兰州理工大学红柳一流学科联合资助项目

51675253

2024

振动、测试与诊断
南京航空航天大学 全国高校机械工程测试技术研究会

振动、测试与诊断

CSTPCD北大核心
影响因子:0.784
ISSN:1004-6801
年,卷(期):2024.44(2)
  • 14