首页|履带车辆主动悬挂多点布置优化

履带车辆主动悬挂多点布置优化

扫码查看
为实现履带车辆主动悬挂减振性能和能耗达到综合最优,基于正交试验方法开展履带车辆主动悬挂多点布置优化设计.首先,建立了履带车辆悬挂系统动力学模型,并通过道路模拟试验验证了该模型的合理性;其次,开展了履带车辆悬挂系统正交试验,分析了4种典型路面下各子悬挂对悬挂系统减振性能影响的敏感性;最后,设计了主动悬挂作动器的6个布置方案,通过建立基于线性二次最优(linear quadratic regulator,简称LQR)控制的履带车辆主动悬挂动力学模型,分析了典型路面下各布置方案对悬挂系统减振性能的影响规律及能耗变化规律.结果表明,通过对履带车辆主动悬挂作动器的布置优化,可以实现悬挂减振性能和能耗之间的平衡.
Multi-point Layout Optimization of Tracked Vehicle Active Suspension
In order to achieve the optimization of active suspension between suspension performance and energy consumption for tracked vehicles,the multi-point layout optimization design of the active suspension based on the orthogonal test method is carried out.Firstly,a dynamic model of the tracked vehicle suspension system is established,and its rationality of the model is validated through road simulation test.Then,the orthogonal test of the suspension system is carried out,and the sensitivity of each sub-suspension on the suspension system per-formance under four typical road surfaces are analyzed.Finally,six layout schemes for active suspension actua-tors are devised.With the linear quadratic regulator(LQR)control,the dynamic model of active suspension is formulated.The influence law of each layout scheme on the suspension system's performance and the change law of energy consumption on typical road surface are analyzed.The results show that the balance between sus-pension performance and energy consumption can be achieved by optimizing the arrangement of active suspen-sion actuators for tracked vehicles.

tracked vehicleactive suspensionroad simulation testoptimizationlinear quadratic regulator(LQR)control

凌启辉、陈昕、戴巨川、何兴云、杨书仪、郭勇

展开 >

湖南科技大学机电工程学院 湘潭,411201

江麓机电集团有限公司 湘潭,411100

履带车辆 主动悬挂 道路模拟试验 优化 基于线性二次最优控制

湖南省教育厅重点项目湖南省教育厅重点项目湖南省科技创新项目

23A037623A03622021RC4038

2024

振动、测试与诊断
南京航空航天大学 全国高校机械工程测试技术研究会

振动、测试与诊断

CSTPCD北大核心
影响因子:0.784
ISSN:1004-6801
年,卷(期):2024.44(2)
  • 22