首页|基于应变数据和改进MHA模型的囊体缺陷检测

基于应变数据和改进MHA模型的囊体缺陷检测

扫码查看
针对浮空器囊体表面缺陷难以检测等问题,提出一种基于应变时序数据和改进多头注意力(multi-head attention,简称MHA)模型的囊体缺陷检测方法,该方法通过对囊体声波激励后的应变时序数据进行端到端特征提取与检测,实现浮空器囊体缺陷检测.首先,在声波激励下,通过粘贴在囊体表面的应变片收集同位置无裂纹和有裂纹时的应变时序数据;其次,将收集的应变时序数据按照一定的长度划分样本,每个样本划分为多个时序向量的组合并输入到改进MHA模型中,提取隐藏于时序数据中的缺陷特征;然后,网络输出各个时序样本相应的缺陷识别结果;最后,在收集到的囊体应变数据上将该方法与其他4种传统模型的检测结果进行对比.结果表明,该方法平均检测准确率为97.7%,优于其他4种模型,验证了该方法的有效性.
The Aerostat Capsule Defect Detection Based on Strain Data and Improved MHA Model
For the difficulty of detecting the surface defects of aerostat capsules,a defect detection method based on strain time series data and an improved multi-head attention(MHA)model is proposed.This proposed method performs end-to-end feature extraction and detection of strain time series data after applying acoustic ex-citation to the capsule and then gets the results of capsule defect detections.First,strain time series data is col-lected from strain gauges attached to the surface of the capsule at the same location with and without cracks un-der acoustic excitation.Then,these collected strain time series data are divided into samples according to a cer-tain length,while each sample is divided into a combination of multiple time series vectors and input into the im-proved MHA model to extract the defect features hidden in the time series data.Finally,the model outputs the corresponding defect identification results for each time series sample.The detection results of the proposed method are compared with the other four traditional models on the collected capsular strain data,and the pro-posed method achieves an average detection accuracy of 97.7%better than the other four models,which verifies the effectiveness of this method.

aerostatneural networkfault detectioncapsuleattention mechanismtime series

卢志强、朱海平、陈志鹏、范良志

展开 >

华中科技大学机械科学与工程学院 武汉,430074

武汉纺织大学机械工程与自动化学院 武汉,430074

浮空器 神经网络 缺陷检测 囊体 注意力机制 时间序列

国家自然科学基金

52075202

2024

振动、测试与诊断
南京航空航天大学 全国高校机械工程测试技术研究会

振动、测试与诊断

CSTPCD北大核心
影响因子:0.784
ISSN:1004-6801
年,卷(期):2024.44(4)