首页|基于小波字典的风速数据重构的压缩感知方法

基于小波字典的风速数据重构的压缩感知方法

扫码查看
由于风速具有明显的非平稳性,常用字典的压缩感知(compressed sensing,简称CS)方法对于风速信号重构效果不佳,故引入基于小波字典的压缩感知方法,用于重构风速缺失数据,有效提升了风速信号的重构精度.通过风速仿真数据和广州塔的监测风速数据验证了本研究方法的有效性,并研究了数据缺失工况、正则化参数、小波字典层数和小波类型对风速信号重构效果的影响.结果表明,基于小波字典的压缩感知方法可有效重构缺失的风速信号.
A Wavelet Dictionary-Based Compressive Sensing Method for Reconstruction of Wind Speed Data
Wind speed is usually non-stationary and not naturally sparse.The commonly used dictionary for the compressed sensing(CS)method is not effective for the reconstruction of the wind speed signals.In this paper,the wavelet dictionary is introduced to improve the sparsity of wind speed signals and effectively enhance the ac-curacy of the reconstructed signal.The effectiveness of this method is verified using both wind speed simulation data and monitored wind speed data of Canton Tower.The effects of data missing scenarios,regularization pa-rameters,wavelet dictionary layers,and wavelet types on the reconstruction performance of the CS method are explored in detail.The results show that the wavelet dictionary-based CS method has high accuracy in recon-structing the missing wind speed signals.

compressive sensingwind speeddata reconstructionwavelet dictionary

朱一凯、余哲帆、陈安妮、万华平

展开 >

东南大学混凝土及预应力混凝土结构教育部重点实验室 南京,211189

浙江大学建筑工程学院 杭州,310058

压缩感知 风速 数据重构 小波字典

国家重点研发计划国家自然科学基金浙江省重点研发计划混凝土及预应力混凝土结构教育部重点实验室开放基金

2021YFF0501001518782352021C03154CPCSME2020-05

2024

振动、测试与诊断
南京航空航天大学 全国高校机械工程测试技术研究会

振动、测试与诊断

CSTPCD北大核心
影响因子:0.784
ISSN:1004-6801
年,卷(期):2024.44(4)