首页|轴承套圈内圆切入磨早期颤振在线监测方法

轴承套圈内圆切入磨早期颤振在线监测方法

Online Monitoring Method for Early Chatter in Bearing Ring Internal Plunge Grinding

扫码查看
为弥补轴承套圈内圆切入磨颤振在早期识别中的特征量选取和智能算法模型方面的不足,提出了基于均方频率和能量熵结合人工蜂群(artifical bee colony,简称ABC)优化支持向量机(support vector machine,简称SVM)的方法.首先,将轴承套圈内圆切入磨过程中的声发射、振动信号通过提取特征方法,获得能量熵、时域参数、能量占比和均方频率4个特征参数;其次,将4个特征参数两两组成特征向量导入SVM,利用准确度、Kappa系数和混淆矩阵分析结果;最后,将均方频率和能量熵导入不同智能算法进行监测分析.结果表明,均方频率和能量熵组成的特征向量对轴承套圈内圆切入磨早期颤振识别效果最优,同时结合ABC-SVM,识别效果可达100%,为在线监测轴承套圈内圆切入磨早期颤振提供了有效方法.
In order to make up for the deficiencies in the selection of feature quantities and intelligent algorithm models in the early identification of bearing collar internal plunge grinding chatter,a method based on energy en-tropy and mean square frequency combines with the artificial bee colony(ABC)optimization support vector ma-chine(SVM).Firstly,the acoustic emission and vibration signals of the inner circle of the bearing collar during the tangential grinding process are extracted by the feature extraction method,and four feature parameters of en-ergy entropy,time domain parameters,energy occupation ratio and mean square frequency are extracted.Sec-ondly,the four feature parameters are composed two by two into a feature vector for SVM analysis and the re-sults are analysed using accuracy,Kappa coefficient and confusion matrix.Finally,the mean square frequency and energy entropy are imported into different intelligent algorithms for monitoring and analysis.The results show that the feature vectors composed of mean square frequency and energy entropy have the best effect on the identification of early chattering in the inner circle plunge grinding of bearing rings,and the combination of ABC-SVM can achieve 100%identification,which provides an effective method for online monitoring of early chatter in the inner circle plunge grinding of bearing rings.

bearing ring internal plunge grindingearly chattermean square frequencyenergy entropyartificial bee colony

迟玉伦、应晓昂、俞鑫、李希铭

展开 >

上海理工大学机械工程学院 上海,200093

轴承套圈内圆切入磨 早期颤振 均方频率 能量熵 人工蜂群

国家自然科学基金

51605294

2024

振动、测试与诊断
南京航空航天大学 全国高校机械工程测试技术研究会

振动、测试与诊断

CSTPCD北大核心
影响因子:0.784
ISSN:1004-6801
年,卷(期):2024.44(4)