首页|基于自适应EKF结构参数识别与鲁棒性分析

基于自适应EKF结构参数识别与鲁棒性分析

扫码查看
扩展卡尔曼滤波(extended Kalman filter,简称EKF)方法常用于结构参数识别,但存在对滤波参数敏感等局限性,需大量试错来寻找最优噪声方差参数.针对此问题,推导了基于残差的协方差匹配公式.首先,通过滑动窗口法或遗忘因子法自适应更新匹配测量噪声方差,实现了基于EKF的自适应识别结构参数;其次,以一个3层Duffing型非线性剪切框架为例来验证方法的有效性,并进行了参数鲁棒性分析.结果表明:滑动窗口法和遗忘因子法均能很好地估计测量噪声方差,识别效果和收敛速度接近;与非自适应EKF方法相比,自适应EKF方法对噪声方差的初始取值不敏感,具有很强的鲁棒性.
Adaptive Extended Kalman Filter-Based Structural Parameter Identification and Robustness Analysis
The extended Kalman filter(EKF)method is commonly used for structural parameter identification.The EKF has limitations such as sensitivity to filtering parameters,and requires the trial and error method to find the optimal noise variance parameter.In this paper,a residual-based covariance matching formula is de-rived,and the covariance matrix of measurement noise can be adaptively updated by either the sliding window method or the forgetting factor method,and the adaptive identification of structural parameters based on the ex-tended Kalman filter is realized.A three-storey Duffing-type nonlinear shearing frame is taken to verify the effec-tiveness of the method,and the parameter robustness analysis is carried out.The results show that both the slid-ing window method and the forgetting factor method can estimate the measurement noise variance well,and the recognition effect and convergence speed are close;Compared to the non-adaptive EKF method,the adaptive EKF method is insensitive to the initial value of the noise variance and has strong robustness.

structural parameter identificationrobustnessadaptive extended Kalman filtersliding window methodforgetting factor method

万华平、马强、欧一鸿、张文杰、周家伟、陈伟刚

展开 >

浙江大学建筑工程学院 杭州,310058

浙江大学平衡建筑研究中心 杭州,310028

浙江大学建筑设计研究院有限公司 杭州,310028

浙江东南网架股份有限公司 杭州,311209

展开 >

结构参数识别 鲁棒性 自适应扩展卡尔曼滤波 滑动窗口法 遗忘因子法

2024

振动、测试与诊断
南京航空航天大学 全国高校机械工程测试技术研究会

振动、测试与诊断

CSTPCD北大核心
影响因子:0.784
ISSN:1004-6801
年,卷(期):2024.44(6)