首页|基于SSWT-GLCM与改进WOA-SVM的变压器机械故障时频诊断

基于SSWT-GLCM与改进WOA-SVM的变压器机械故障时频诊断

扫码查看
为进一步提高变压器故障诊断精度,提出一种基于同步压缩小波变换(synchrosqueezed wavelet transform,简称SSWT)-灰度共生矩阵(gray-level co-occurrence matrix,简称GLCM)的变压器机械故障时频诊断方法.首先,利用SSWT对变压器振动信号进行时频分析,得到能量堆叠密集的二维时频图,有效保留了变压器振动信号的主要特征信息;其次,联合描述区域像素关系的GLCM提取出二维时频图的主要特征信息,为后续故障诊断模型提供有效的特征参数;最后,通过改进鲸鱼算法优化(whale optimization algorithm,简称WOA)对支持向量机(support vector machine,简称SVM)的关键参数进行优化,建立了基于改进WOA-SVM的变压器典型机械故障时频诊断模型.实验结果表明,所构建的改进WOA-SVM故障诊断模型具有较高的识别精度和运算效率,为基于振动信号的变压器机械故障时频诊断提供了技术支撑.
Time Frequency Diagnosis of Transformer Mechanical Fault Based on SSWT-GLCM and Improved WOA-SVM
In order to further improve the accuracy of transformer fault diagnosis,a time-frequency diagnosis method of transformer mechanical fault based on synchronous compressed wavelet transform and gray level co-occurrence matrix(SSWT-GLCM)and improved whale algorithm optimization and support vector machine(WOA-SVM)is proposed.Firstly,the time-frequency analysis of transformer vibration signal is carried out by using SSWT,and the two-dimensional time-frequency diagram with dense energy stack is obtained,which ef-fectively retains the characteristic information of transformer vibration signal.Then,the GLCM which jointly de-scribes the relationship between regional pixels extracts the main feature information of two-dimensional time-frequency map,providing effective feature parameters for subsequent fault diagnosis models.Finally,the key parameters of SVM are optimized by improved WOA,The time-frequency diagnosis model of typical mechani-cal faults of transformer based on improved WOA-SVM is established.The experimental results show that the improved WOA-SVM fault diagnosis model has high recognition accuracy and operation efficiency,and pro-vides technical support for transformer mechanical fault time-frequency diagnosis based on vibration signal.

transformersynchrosqueezed wavelet transform(SSWT)gray-level co-occurrence matrix(GLSM)improved whale optimization algorithm-support vector machine(WOA-SVM)algo-rithmfault classification

杨义、李晓华、李俊聪、赵文彬、陈皖皖、夏能弘

展开 >

上海电力大学电气工程学院 上海,200090

变压器 同步压缩小波变换 灰度共生矩阵 改进鲸鱼算法优化-支持向量机算法 故障分类

2024

振动、测试与诊断
南京航空航天大学 全国高校机械工程测试技术研究会

振动、测试与诊断

CSTPCD北大核心
影响因子:0.784
ISSN:1004-6801
年,卷(期):2024.44(6)