首页|地震作用下变压器套管结构实时损伤识别

地震作用下变压器套管结构实时损伤识别

扫码查看
为了研究特高压(ultra-high voltage,简称UHV)变压器套管在地震作用下的结构损伤实时识别方法,首先,将结构加速度响应进行高通滤波后通过连续小波变换得到滤波尺度图,并将其作为判定套管损伤的特征;其次,通过有限元计算了不同损伤工况下套管的加速度响应,将其作为训练数据输入卷积神经网络(convolutional neural network,简称CNN)进行训练;最后,通过振动台试验验证了该方法的准确性.结果表明:该方法抗噪性能优异且识别较为精准;地震作用下套管结构损伤所导致的加速度响应异常高频信息可以作为损伤判定依据;套管单处结构损伤信息在不同位置的采样信号中均有体现,使用训练完成的神经网络进行识别时无需未损伤结构响应进行对比,可实现对地震造成的特高压套管结构损伤进行快速识别判定.
Real-Time Seismic Damage Detection for Transformer Bushings
In order to study the seismic damage detection method of ultra-high voltage(UHV)transformer bushings,this paper proposes to use high-pass filtering on the acceleration response of the structure and then ob-tain the filtered scalogram through continuous wavelet transform,which are used as the characteristic parameter of damage.The acceleration responses of the bushing under different damage conditions are calculated by finite element method,which are input as training data into the convolutional neural network(CNN),and the accu-racy of this method is verified by the results of shaking table tests.The results show that this method has excel-lent noise resistance and accurate identification.Abnormal high-frequency information of acceleration response caused by seismic structural damage can be used as damage characteristic.The information of single damage on bushing structure is contained in signals from different positions.This method is not necessary to compare with the undamaged structural response,which means it can rapidly identify the structure damage of UHV bushing caused by earthquake.

seismic responsesconvolutional neural networkdamage detectionshaking table testultra-high voltage(UHV)transformer bushing

陆军、郭小农、朱旺、谢强

展开 >

同济大学土木工程学院 上海,200092

地震响应 卷积神经网络 损伤识别 振动台试验 特高压变压器套管

2024

振动、测试与诊断
南京航空航天大学 全国高校机械工程测试技术研究会

振动、测试与诊断

CSTPCD北大核心
影响因子:0.784
ISSN:1004-6801
年,卷(期):2024.44(6)