首页|基于编码器信号自适应MOMEDA的太阳轮故障检测

基于编码器信号自适应MOMEDA的太阳轮故障检测

扫码查看
针对行星减速器太阳轮故障检测问题,提出了一种基于改进自适应多点最优最小熵反褶积(multipoint optimal minimum entropy deconvolution adjusted,简称MOMEDA)的太阳轮故障检测方法.首先,基于编码器信号传递路径短、与动力学直接相关的优势,结合传动参数,计算得到故障特征周期,确定故障周期搜索区间及步长;其次,利用谱负熵最大化原则自适应确定优化滤波器长度,并得到解卷积后的信号;最后,采用包络谱分析揭示太阳轮齿根裂纹故障特征.通过仿真和实测数据分析,验证了所提方法的有效性.
Sun Gear Fault Detection Via Adaptive MOMEDA Based on Encoder Signal
Aiming at the problem of sun gear fault detection of conventional electromechanical equipment plan-etary reducer,a sun gear fault detection method based on improved adaptive multipoint optimal minimum en-tropy deconvolution adjusted(MOMEDA)is proposed.Firstly,based on the advantages of short transmission path and direct correlation with dynamics of the encoder signal,the fault characteristic period is calculated by the parameters of the transmission system,and the search period and step size of the fault can be determined.Sec-ondly,the optimal filter length can be adaptively determined by the principle of spectral negentropy maximiza-tion,and the deconvolution is obtained.Finally,the envelope spectrum analysis is used to reveal the characteris-tics of the sun gear root crack.The effectiveness of the proposed scheme is verified by simulations and experi-ments.

multipoint optimal minimum entropy deconvolution adjusted(MOMEDA)instantaneous angular speedspectral negentropysun gear tooth root crackfault feature extraction

田田、郭瑜、樊家伟、徐万通、朱云贵

展开 >

昆明理工大学机电工程学院 昆明,650500

多点最优最小熵反褶积 瞬时角速度 谱负熵 太阳轮齿根裂纹 特征提取

2024

振动、测试与诊断
南京航空航天大学 全国高校机械工程测试技术研究会

振动、测试与诊断

CSTPCD北大核心
影响因子:0.784
ISSN:1004-6801
年,卷(期):2024.44(6)