首页|小波包奇异谱熵与LVQ网络齿轮箱轴承退化评估

小波包奇异谱熵与LVQ网络齿轮箱轴承退化评估

扫码查看
为研究齿轮箱轴承性能退化评估,首先,根据高速列车齿轮箱轴承与齿轮的相关数据,对齿轮箱轴承仿真振动信号训练样本进行小波包分解并计算小波包奇异谱熵构成特征向量,输入到学习向量量化(learning vector quantization,简称LVQ)神经网络聚类模型中,建立性能退化评估模型;其次,将测试样本按同样的方式提取特征向量,输入到建立好的模型中评估轴承性能退化状态;然后,选取轴承全寿命疲劳试验进行分析,并选择特征优选和模糊C均值聚类算法进行对比;最后,根据LVQ神经网络聚类算法确定训练样本中正常状态和失效状态的聚类中心,建立性能退化评估模型.结果表明:将小波包奇异谱熵和LVQ神经网络聚类算法相结合,能较好区分齿轮箱轴承不同的退化状态,准确表现轴承性能退化曲线;通过隶属度函数计算隶属度作为性能退化评价指标,可以对性能退化状态进行定量表征;通过对时域指标和频域指标特征优选进行对比,验证了本研究方法更加有效,对早期退化更敏感,能及时发现早期退化并且能对退化程度进行准确评估.
Performance Degradation Evaluation of Gearbox Bearings Based on Wavelet Packet Singular Spectrum Entropy and LVQ Neural Network Clustering
In order to study the performance degradation evaluation of gearbox bearing,,the simulation vibra-tion signal training sample of gearbox bearing is decomposed by wavelet packet according to the relevant data of gearbox bearing and gear of high-speed train.The eigenvector formed by wavelet packet singular spectrum en-tropy is calculated,which is input into the learning vector quantization(LVQ)neural network clustering model to establish the performance degradation evaluation model.Secondly,the feature vector of the test sample is ex-tracted in the same way and input into the established model to evaluate the bearing performance degradation state.Then,the bearing life fatigue test is selected for analysis,and the feature optimization and fuzzy C-means clustering algorithm are selected for comparison.Finally,according to LVQ neural network clustering algo-rithm,the clustering centers of normal state and failure state in the training samples are determined,and the per-formance degradation evaluation model is established.The results show that the algorithm combined with wave-let packet singular spectrum entropy and LVQ neural network clustering algorithm can distinguish the different degradation states of gearbox bearings well and accurately represent the bearing performance degradation curve.Membership degree is calculated by membership function as an evaluation index of performance degradation,which can quantitatively characterize the state of performance degradation.By comparing the characteristics of time-domain indicators and frequency-domain indicators,it is verified that this research method is more effective and sensitive to the early degradation,and thus can detect early degradation in time and accurately evaluate the degree of degradation.

traffic engineeringgearbox vibration accelerationsignal simulationwavelet packet singular spec-trum entropylearning vector quantization(LVQ)neural network clusteringperformance degra-dation evaluation

肖乾、汪寒俊、朱海燕、王文静、朱恩豪、叶小芬、魏昱洲、李林

展开 >

华东交通大学机电与车辆工程学院 南昌,330013

北京交通大学机械与电子控制工程学院 北京,100044

中车戚墅堰机车车辆工艺研究所股份有限公司 常州,213011

株洲国创轨道科技有限公司 株洲,412000

展开 >

交通工程 齿轮箱振动加速度 信号仿真 小波包奇异谱熵 学习向量量化神经网络聚类 性能退化评估

2024

振动、测试与诊断
南京航空航天大学 全国高校机械工程测试技术研究会

振动、测试与诊断

CSTPCD北大核心
影响因子:0.784
ISSN:1004-6801
年,卷(期):2024.44(6)