首页|基于机器学习的围岩监测指标效力评估

基于机器学习的围岩监测指标效力评估

扫码查看
地下工程向着深部地层发展,实践中常出现超经验认识现象,需要有效评估围岩监测指标对围岩损伤状态的判定能力.针对此问题,在引入围岩体积扩容率(volume expansion rate,简称VER)指标的基础上,提出一种基于机器学习的围岩监测指标效力评估方案.首先,基于离散元方法,实施6种地应力水平的围岩监测试验,隧洞开挖后实时监测位移、应力以及岩体损伤;其次,基于机器学习技术进行围岩损伤判定与指标评估试验.结果表明:离散元试验获得的围岩监测数据合理;基于机器学习分类算法的损伤判定结果具有较高精度;随着地应力的增加,显著性监测指标呈现由浅部到深部、由区域性损伤到点破坏的变化过程,该结果从监测角度描述了围岩失稳历程;在地应力水平更高的条件下,切向应力对围岩状态变化更加敏感.
Effectiveness Evaluation of Surrounding Rock Monitoring Index Based on Machine Learning
Underground engineering is advancing into deeper strata,where phenomenon beyond empirical rec-ognition frequently occur in practice.There is a need to effectively assess the diagnostic capability of surrounding rock monitoring indicators for the damage state of the surrounding rock.The volume expansion rate(VER)in-dex of surrounding rock is introduced,and a method for evaluating the effectiveness of surrounding rock monitor-ing indexes based on machine learning is proposed.The data samples are obtained from the discrete element test.Six conditions of ground stress levels are designed.The displacement,stress and rock mass damage are monitored in real time after tunnel excavation.Secondly,experiments for surrounding rock damage determina-tion and indicator assessment are carried out using machine learning techniques.The results show that:The sur-rounding rock monitoring data obtained from the discrete element test are reasonable and effective;The damage determination results based on classification algorithm have high accuracy;With the increase of in-situ stress,the significant monitoring indexes show a change process from shallow to deep,from regional damage to point failure.Under the condition of higher in-situ stress level,tangential stress is more sensitive to the change of sur-rounding rock state.This method innovatively evaluates the effectiveness of surrounding rock monitoring indica-tors and provides a new criterion for monitoring and assessing the instability of surrounding rock.

surrounding rock damage judgmentdiscrete element methodmachine learningvolume expansion ratesurrounding rock instability

温嘉琦、汤雷、姜波、占其兵、王宇琨

展开 >

南京水利科学研究院 南京,210029

南京航空航天大学机场工程系 南京,211106

武汉大学水利水电学院 武汉,430072

天津大学建筑工程学院 天津,300350

展开 >

围岩损伤判定 离散元方法 机器学习 围岩体积扩容率 围岩失稳

2024

振动、测试与诊断
南京航空航天大学 全国高校机械工程测试技术研究会

振动、测试与诊断

CSTPCD北大核心
影响因子:0.784
ISSN:1004-6801
年,卷(期):2024.44(6)