首页|城市固体废物焚烧过程炉温的鲁棒加权异构特征集成预测模型

城市固体废物焚烧过程炉温的鲁棒加权异构特征集成预测模型

扫码查看
针对城市固体废物(Municipal solid waste,MSW)焚烧过程,数据具有异常值和特征变量维度高时,炉温预测模型的准确性和泛化能力欠缺的挑战性问题,提出一种鲁棒加权异构特征集成建模方法,用于建立城市固体废物焚烧过程炉温预测模型。首先,依据焚烧过程机理将高维特征变量划分为异构特征集合,并采用互信息和相关系数综合评估每组异构特征集合的贡献度;其次,采用基于混合t分布的鲁棒随机配置网络(Stochastic configuration network,SCN)构建基模型,同时确定训练样本的惩罚权重;最后,设计一种鲁棒加权负相关学习(Negative correlation learning,NCL)策略,实现基模型的鲁棒同步训练。使用国内某城市固体废物焚烧厂的炉温历史数据,对该方法进行测试。测试结果表明,该方法建立的炉温预测模型在准确性和泛化能力方面具有优势。
Robust Weighted Heterogeneous Feature Ensemble Prediction Model of Temperature in Municipal Solid Waste Incineration Process
Aiming at the challenging problems of the deficient accuracy and generalization ability of the furnace temperature prediction model when the municipal solid waste(MSW)incineration process data has abnormal val-ues and high dimensionality of feature variables,a robust weighted heterogeneous feature ensemble modeling meth-od is proposed to establish the furnace temperature prediction model of the municipal solid waste incineration pro-cess.Firstly,the high dimensional feature variables are divided into heterogeneous feature sets according to the in-cineration process mechanism,and the contribution of each heterogeneous feature set is evaluated by the mutual in-formation and correlation coefficient.Secondly,a robust stochastic configuration network(SCN)with the t mixture distribution is employed to construct base models,and penalty weights of training samples are determined at the same time.Finally,the robust weighted negative correlation learning(NCL)strategy is used to realize the syn-chronous training of base models.Comparative experiments are carried out using the historical furnace temperature data of a municipal solid waste incineration plant in China.The results show that the furnace temperature predic-tion model established by the proposed method performs more favourably in accuracy and generalization.

Municipal solid waste incinerationfurnace temperature predictionheterogeneous feature ensemblero-bust modelingstochastic configuration network(SCN)

郭京承、严爱军、汤健

展开 >

北京工业大学信息学部 北京 100124

数字社区教育部工程研究中心 北京 100124

城市轨道交通北京实验室 北京 100124

城市固体废物焚烧 炉温预测 异构特征集成 鲁棒建模 随机配置网络

国家自然科学基金国家自然科学基金北京市自然科学基金

62373017620730064212032

2024

自动化学报
中国自动化学会 中国科学院自动化研究所

自动化学报

CSTPCD北大核心
影响因子:1.762
ISSN:0254-4156
年,卷(期):2024.50(1)
  • 24