自动化学报2024,Vol.50Issue(1) :121-131.DOI:10.16383/j.aas.c230042

城市固体废物焚烧过程炉温的鲁棒加权异构特征集成预测模型

Robust Weighted Heterogeneous Feature Ensemble Prediction Model of Temperature in Municipal Solid Waste Incineration Process

郭京承 严爱军 汤健
自动化学报2024,Vol.50Issue(1) :121-131.DOI:10.16383/j.aas.c230042

城市固体废物焚烧过程炉温的鲁棒加权异构特征集成预测模型

Robust Weighted Heterogeneous Feature Ensemble Prediction Model of Temperature in Municipal Solid Waste Incineration Process

郭京承 1严爱军 2汤健3
扫码查看

作者信息

  • 1. 北京工业大学信息学部 北京 100124;数字社区教育部工程研究中心 北京 100124
  • 2. 北京工业大学信息学部 北京 100124;数字社区教育部工程研究中心 北京 100124;城市轨道交通北京实验室 北京 100124
  • 3. 北京工业大学信息学部 北京 100124
  • 折叠

摘要

针对城市固体废物(Municipal solid waste,MSW)焚烧过程,数据具有异常值和特征变量维度高时,炉温预测模型的准确性和泛化能力欠缺的挑战性问题,提出一种鲁棒加权异构特征集成建模方法,用于建立城市固体废物焚烧过程炉温预测模型.首先,依据焚烧过程机理将高维特征变量划分为异构特征集合,并采用互信息和相关系数综合评估每组异构特征集合的贡献度;其次,采用基于混合t分布的鲁棒随机配置网络(Stochastic configuration network,SCN)构建基模型,同时确定训练样本的惩罚权重;最后,设计一种鲁棒加权负相关学习(Negative correlation learning,NCL)策略,实现基模型的鲁棒同步训练.使用国内某城市固体废物焚烧厂的炉温历史数据,对该方法进行测试.测试结果表明,该方法建立的炉温预测模型在准确性和泛化能力方面具有优势.

Abstract

Aiming at the challenging problems of the deficient accuracy and generalization ability of the furnace temperature prediction model when the municipal solid waste(MSW)incineration process data has abnormal val-ues and high dimensionality of feature variables,a robust weighted heterogeneous feature ensemble modeling meth-od is proposed to establish the furnace temperature prediction model of the municipal solid waste incineration pro-cess.Firstly,the high dimensional feature variables are divided into heterogeneous feature sets according to the in-cineration process mechanism,and the contribution of each heterogeneous feature set is evaluated by the mutual in-formation and correlation coefficient.Secondly,a robust stochastic configuration network(SCN)with the t mixture distribution is employed to construct base models,and penalty weights of training samples are determined at the same time.Finally,the robust weighted negative correlation learning(NCL)strategy is used to realize the syn-chronous training of base models.Comparative experiments are carried out using the historical furnace temperature data of a municipal solid waste incineration plant in China.The results show that the furnace temperature predic-tion model established by the proposed method performs more favourably in accuracy and generalization.

关键词

城市固体废物焚烧/炉温预测/异构特征集成/鲁棒建模/随机配置网络

Key words

Municipal solid waste incineration/furnace temperature prediction/heterogeneous feature ensemble/ro-bust modeling/stochastic configuration network(SCN)

引用本文复制引用

基金项目

国家自然科学基金(62373017)

国家自然科学基金(62073006)

北京市自然科学基金(4212032)

出版年

2024
自动化学报
中国自动化学会 中国科学院自动化研究所

自动化学报

CSTPCD北大核心
影响因子:1.762
ISSN:0254-4156
参考文献量2
段落导航相关论文