首页|基于粒度聚类的转炉炼钢氧气消耗量预测

基于粒度聚类的转炉炼钢氧气消耗量预测

扫码查看
转炉炼钢是钢铁企业的主要耗氧工序,预测转炉炼钢的氧气消耗量对氧气系统合理调度、保证生产安全具有重要意义。考虑到转炉冶炼工况多、钢种数据粒度不统一,提出一种基于粒度聚类的转炉炼钢氧气消耗量预测方法。首先,利用孤立森林异常检测法剔除历史数据库中的异常数据;接着,采用皮尔逊相关性分析和互信息相关系数选取相关影响因子,对不同钢种数据进行信息粒化,实现数据特征提取和维度统一,使用模糊C均值(Fuzzy C-means,FCM)划分工况并建立不同工况下的氧气消耗量预测子模型;最后,利用企业的实际生产数据进行实验,验证所提方法的准确性和有效性。
Converter Steelmaking Oxygen Consumption Prediction Based on Granularity Clustering
Oxygen consumption prediction in converter steelmaking is of great significance for the rational schedul-ing of the oxygen system and ensuring production safety in steel enterprise.Considering the diverse operating condi-tions of converter smelting and the inconsistent granularity of steel grade data,this paper proposes a prediction method for oxygen consumption in converter steelmaking based on granularity clustering.Firstly,the isolation forest anomaly detection method is used to remove abnormal data from the historical database.Then,Pearson cor-relation analysis and mutual information correlation coefficient are employed to select relevant influencing factors and achieve information granulation for different steel grade data,thereby extracting data features and unifying di-mensions.Fuzzy C-means(FCM)clustering is utilized to divide the operating conditions and establish oxygen con-sumption prediction sub-models for different conditions.Finally,the accuracy and effectiveness of the proposed method are validated through experiments using actual production data from the steel enterprise.

Converter steelmakingoxygen consumption predictioninformation granulationoperating condition recognition

阳青锋、赖旭芝、杜胜、胡杰、陈略峰、吴敏

展开 >

中国地质大学(武汉)自动化学院 武汉 430074

复杂系统先进控制与智能自动化湖北省重点实验室 武汉 430074

地球探测智能化技术教育部工程研究中心 武汉 430074

转炉炼钢 氧气消耗预测 信息粒化 工况识别

高等学校学科创新引智计划资助项目国家自然科学基金湖北省自然科学基金湖北省自然科学基金湖北省自然科学基金中国博士后科学基金

B17040623034312015CFA0102021CFB1452022CFB5822023M733306

2024

自动化学报
中国自动化学会 中国科学院自动化研究所

自动化学报

CSTPCD北大核心
影响因子:1.762
ISSN:0254-4156
年,卷(期):2024.50(1)
  • 22