首页|基于高仿生形态布局的仿鸽扑翼飞行机器人系统设计

基于高仿生形态布局的仿鸽扑翼飞行机器人系统设计

扫码查看
针对现有扑翼飞行机器人存在的飞行形态与实际鸟类相差较大,以及翅膀、尾翼布局和俯仰、转向控制方式仿生度较低的问题,提出一种形态布局与鸽子相仿的扑翼飞行机器人系统设计及实现方案.通过设计弧面-折翼-后掠翅膀、仿鸟扇形尾翼以及尾翼挨近翅膀后缘布置的布局方式,使扑翼机器人飞行形态更加接近真实鸟类,提高扑翼机器人的形态仿生度.在此基础上,设计结合下扑角调控无需尾翼大角度上翘的俯仰控制方式,以及不依赖于尾翼的翅膀收缩转向控制方式,在提高仿生度的同时保证飞行控制的有效性.在具体设计过程中,首先参考鸽子翅膀型式选择不同类型翅膀并进行风洞测试,确定出下扑角变化时仍能保持较优升推力性能的翅膀设计方案;其次,对各种尾翼型式进行分析和比较,结合鸽子尾翼特点进行仿鸽尾翼及俯仰、转向控制机构设计,并通过风洞测试验证;最后,设计飞控系统并装配整机,进行外场飞行测试,验证仿鸽扑翼飞行机器人平台的稳定性和可控性.
System Design of Dove-like Flapping-wing Flying Robot Based on Highly Bionic Morphological Layout
Some existing flapping-wing flying robots show significantly different flight forms compared with actual birds,and exhibit less bionic features of their wing and tail layout and their control ways of pitching and steering.In this paper,we propose a system design and implementation scheme for a flapping-wing flying robot with a mor-phological layout similar to that of a pigeon.By designing curved-folded-swept wings and a bird-like fan-shaped tail near the trailing edge of the wings,the flight form of the flapping-wing robot is closer to that of a bird,which im-proves the bionic performance of the flying robot morphologically.Upon this basis,we propose a pitching control method via regulating the downstroke angle without need of a large upper declination angle of the tail.We also pro-pose a wing retraction control method that is independent of the tail,ensuring the effectiveness of flight control while emphasising more bionic features.In the specific design process,different types of wings according to those of pigeons are selected firstly,and wind tunnel tests are then performed to determine the design scheme that can maintain better lift-thrust performance when the downstroke angle changes.Next,by analyzing and comparing vari-ous types of tails,we make a tail for the robot with reference to the characteristics of the pigeon.Besides,we design pitching and steering control mechanisms and verify their effectiveness via wind tunnel tests.Finally,we develop a flight control system and integrate it on the robot.The stability and controllability of the designed dove-like flap-ping-wing flying robot is confirmed by flight tests.

Highly bionic morphological layoutdove-like flapping-wing flying robotfolded wingsfan-shaped tailwind tunnel testspitching controlsteering control

王久斌、贺威、孟亭亭、邹尧、付强

展开 >

北京科技大学智能科学与技术学院 北京 100083

北京科技大学人工智能研究院 北京 100083

北京科技大学智能仿生无人系统教育部重点实验室 北京 100083

高仿生形态布局 仿鸽扑翼飞行机器人 折翼翅膀 扇形尾翼 风洞实验 俯仰控制 转向控制

国家自然科学基金国家自然科学基金国家自然科学基金北京高校高精尖学科"北京科技大学-人工智能科学与工程"北京高校高精尖学科"北京科技大学-人工智能科学与工程"北京高校高精尖学科"北京科技大学-人工智能科学与工程"Beijing Top Discipline for Artificial Intelligent Science and Engineering,University of science and Technology Beijing

622253046193300162173031622253046193300162173031

2024

自动化学报
中国自动化学会 中国科学院自动化研究所

自动化学报

CSTPCD北大核心
影响因子:1.762
ISSN:0254-4156
年,卷(期):2024.50(2)
  • 38