首页|基于真实退化估计与高频引导的内窥镜图像超分辨率重建

基于真实退化估计与高频引导的内窥镜图像超分辨率重建

扫码查看
内窥镜是诊断人体器官疾病的重要医疗设备,然而受人体内腔环境影响,内窥镜图像分辨率一般较低,需对其进行超分辨处理.目前多数基于深度学习的超分辨算法直接使用双三次插值下采样从高质量图像中获取低分辨率(Low-resol-ution,LR)图像以进行配对训练,此种方式会导致纹理细节丢失,不适用于医学图像.为解决该问题,针对医学内窥镜图像开发了一种新颖的退化框架,首先从真实低质量内窥镜图像中提取丰富多样的真实模糊核与噪声模式,之后提出一种退化注入算法,利用提取的真实模糊核与噪声将高分辨率(High-resolution,HR)内窥镜图像退化为符合真实域的低分辨率图像.同时,提出一种高频引导的残差密集超分辨网络,采用基于双频率信息交互的频率分离策略,并设计多层级融合机制,将提取的多级高频信息逐层嵌入残差密集模块的多层特征,以充分恢复内窥镜图像的高频细节和低频内容.在合成与真实数据集上的大量实验表明,我们的方法优于对比方法,具有更好的主客观质量评价.
Super-resolution of Endoscopic Images Based on Real Degradation Estimation and High-frequency Guidance
Endoscopes are effective medical devices for diagnosing diseases of human organs.However,due to the influence of the internal cavity environment of the human body,the resolution of endoscope images is generally low.Most existing deep learning-based super-resolution algorithms directly use bicubic interpolation downsampling to obtain low-resolution(LR)images from high-quality images for paired training.However,these methods will lead to texture details loss and are not suitable for medical images.To solve this problem,this paper proposes a novel de-gradation framework for medical endoscopic images.First,diverse realistic blur kernels and noise patterns are ex-tracted from real-world low-quality endoscopic images,and then a degradation injection algorithm is proposed.The extracted real blur kernels and noise degrade the high-resolution(HR)endoscopic image into a low-resolution image.In addition,this paper proposes a high-frequency guided residual dense super-resolution network,which adopts a frequency separation strategy based on dual-frequency information interaction.And a multi-level fusion mechanism is designed to embed the extracted multi-level high-frequency information into the multi-layer features of the resid-ual dense module layer by layer.This helps recover the high-frequency details and low-frequency content of the en-doscopic image.Extensive experiments on synthetic and real-world datasets show that our method outperforms the contrastive methods with better subjective and objective quality evaluations.

Endoscopic image super-resolutiondegradation estimationhigh-frequency guidanceconvolutional neural network

李嫣、任文琦、张长青、张金刚、聂云峰

展开 >

中国科学院信息工程研究所 北京 100093中国

中国科学院大学网络空间安全学院 北京 100190中国

中国科学院大学未来技术学院 北京 100039中国

中山大学网络空间安全学院 深圳 518107中国

天津大学智能与计算学部 天津 300350中国

布鲁塞尔自由大学应用物理与光子学系 布鲁塞尔1050比利时

展开 >

内窥镜图像超分辨率 退化估计 高频引导 卷积神经网络

中国科学院网络安全和信息化专项深圳市科技计划

CAS-WX2022SF-0102JCYJ20220530145209022

2024

自动化学报
中国自动化学会 中国科学院自动化研究所

自动化学报

CSTPCD北大核心
影响因子:1.762
ISSN:0254-4156
年,卷(期):2024.50(2)
  • 59