首页|一种基于条件梯度的加速分布式在线学习算法

一种基于条件梯度的加速分布式在线学习算法

扫码查看
由于容易实施,基于投影梯度的分布式在线优化模型逐渐成为一种主流的在线学习方法.然而,在处理大数据应用时,投影步骤成为该方法的计算瓶颈.近年来,研究者提出了面向凸代价函数的分布式在线条件梯度算法,其悔界为O(T3/4),其中T是一个时间范围.该算法存在两方面的问题,一是其悔界劣于公认的悔界O(√T);二是没有分析非凸代价函数的收敛性能,而实际应用中代价函数大部分是非凸函数.因此,提出一种基于条件梯度的加速分布式在线学习算法,使用Frank-Wolfe步骤替代投影步骤,避免昂贵的投影计算.文中证明当局部代价函数为凸函数时,所提算法达到公认的悔界O(√T),当局部代价函数为潜在非凸函数时,所提算法以速率O(√T)收敛到平稳点.最后,仿真实验验证了所提算法的性能与理论证明的结论.
An Accelerated Distributed Online Learning Algorithm Based on Conditional Gradient
The distributed online optimization model based on projected gradient has become a prominent paradigm for online learning due to its simplicity.However,this paradigm is incapable of handling massive data ap-plications because the projection step becomes the computational bottleneck.Recent studies have presented the dis-tributed online conditional gradient algorithms for convex cost functions,which achieved an O(T3/4)regret bound,where T is a time horizon.There are two negative problems for those algorithms.The first one is that the regret bound of those algorithms is worse than the well known regret bound O(√T).The second one is that the conver-gence performance of the presented algorithms has not been analyzed for non-convex cost functions,which are common in practice.In this paper,we propose an accelerated distributed online learning algorithm based on the conditional gradient method over networks,which avoids the prohibitively expensive projection steps by using Frank-Wolfe step.Moreover,when the local cost functions are convex,we show that the regret bound of O(√T)is achieved.When the local cost functions are potentially non-convex,we also show that the algorithm converges to some sta-tionary points at rate of O(√T).Finally,the performance of the proposed algorithm and the theoretical results are verified by simulation experiments.

Conditional gradientdistributed online learningregret boundconvergence rate

吴庆涛、朱军龙、葛泉波、张明川

展开 >

河南科技大学信息工程学院 洛阳 471023

南京信息工程大学自动化学院 南京 210044

条件梯度 分布式在线学习 悔界 收敛速率

国家自然科学基金国家自然科学基金国家自然科学基金中原科技创新领军人才中原科技创新领军人才

620330106187143061976243214200510012224200510004

2024

自动化学报
中国自动化学会 中国科学院自动化研究所

自动化学报

CSTPCD北大核心
影响因子:1.762
ISSN:0254-4156
年,卷(期):2024.50(2)
  • 37