首页|基于渐进高斯滤波融合的多视角人体姿态估计

基于渐进高斯滤波融合的多视角人体姿态估计

扫码查看
针对视觉遮挡引起的人体姿态估计(Human pose estimation,HPE)性能下降问题,提出基于渐进高斯滤波(Progressive Gaussian filtering,PGF)融合的人体姿态估计方法.首先,设计分层性能评估方法对多视觉量测进行分类处理,以适应视觉遮挡引起的量测不确定性问题.其次,构建分布式渐进贝叶斯滤波融合框架,以及设计一种分层分类融合估计方法来提升复杂量测融合的鲁棒性和准确性.特别地,针对量测统计特性变化问题,利用局部估计间的交互信息来引导渐进量测更新,从而隐式地补偿量测不确定性.最后,仿真与实验结果表明,相比于现有的方法,所提的人体姿态估计方法具有更高的准确性和鲁棒性.
Multi-view Human Pose Estimation Based on Progressive Gaussian Filtering Fusion
A human pose estimation(HPE)method based on progressive Gaussian filtering(PGF)fusion is pro-posed to address the performance degradation issue caused by visual occlusion.Firstly,a hierarchical performance evaluation method is designed to classify and handle multiple visual measurements,in order to adapt to the uncer-tainty problem caused by visual occlusion.Secondly,a distributed progressive Bayesian filtering fusion framework is constructed,and a hierarchical classification fusion estimation method is designed to improve the robustness and ac-curacy of complex measurement fusion.Specifically,to address the issue of measurement statistical characteristic variation,the interactive information among local estimators is utilized to guide the progressive measurement up-date,thereby implicitly compensating for measurement uncertainty.Finally,from simulation and experimental res-ults,it demonstrates that compared with existing methods,the proposed human pose estimation method achieves higher accuracy and robustness.

Progressive Gaussian filtering(PGF)adaptive filteringdistributed fusionhuman pose estimation(HPE)

杨旭升、吴江宇、胡佛、张文安

展开 >

浙江工业大学信息工程学院 杭州 310023

浙江省嵌入式系统联合重点实验室 杭州 310023

渐进高斯滤波 自适应滤波 分布式融合 人体姿态估计

浙江省"尖兵领雁"研发攻关计划浙江省自然科学基金

2022C03114LY23F030006

2024

自动化学报
中国自动化学会 中国科学院自动化研究所

自动化学报

CSTPCD北大核心
影响因子:1.762
ISSN:0254-4156
年,卷(期):2024.50(3)
  • 28