首页|基于慢特征分析的分布式动态工业过程运行状态评价

基于慢特征分析的分布式动态工业过程运行状态评价

扫码查看
现代工业过程通常具有规模大、流程长和工序多的特点,导致传统的集中式建模方法会淹没过程的局部变化信息,从而无法及时识别早期的非优运行状态.此外,闭环控制的广泛应用使得过程变量普遍存在时序相关性.针对以上问题,提出一种基于慢特征分析(Slow feature analysis,SFA)的分布式动态工业过程运行状态评价方法.首先,结合动态时间规整(Dynamic time warping,DTW)和K-medoids聚类算法对过程进行分解;然后,对每一变量子块建立相应的动态慢特征分析(Dynamic slow feature analysis,DSFA)模型;最后,利用贝叶斯推理获得全局的综合评价指标.通过在数值案例和金湿法冶金过程的仿真应用,验证了该方法的有效性.
Distributed Operating Performance Assessment of Dynamic Industrial Processes Based on Slow Feature Analysis
The modern industrial processes are generally characterized by large scale,long processes and multiple procedures.In this case,the traditional centralized model may submerge the local change information of the pro-cesses,thus failing to identify the early non-optimal operation status in time.In addition,the wide application of closed-loop control brings the universal existence of temporal correlations of process variables.In view of the above problem,a distributed operating performance assessment scheme of dynamic industrial processes based on slow fea-ture analysis(SFA)is proposed.First,the process decomposition is realized by combining dynamic time warping(DTW)and K-medoids clustering algorithms.Second,the corresponding dynamic slow feature analysis(DSFA)model is established for each sub-block.Finally,the overall comprehensive assessment index is obtained through Bayesian inference.The effectiveness of the scheme is verified by numerical examples and gold hydrometallurgy pro-cess.

Distributed modeloperating performance assessmentslow feature analysis(SFA)dynamic time warp-ing(DTW)K-medoids clustering

钟林生、常玉清、王福利、高世红

展开 >

东北大学信息科学与工程学院 沈阳 110819

东北大学流程工业综合自动化国家重点实验室 沈阳 110819

山西大学自动化与软件学院 太原 030006

分布式模型 运行状态评价 慢特征分析 动态时间规整 K-medoids聚类

国家自然科学基金国家自然科学基金国家重点研发计划国家重点研发计划

62273078619730572021YFF06024042021YFC2902703

2024

自动化学报
中国自动化学会 中国科学院自动化研究所

自动化学报

CSTPCD北大核心
影响因子:1.762
ISSN:0254-4156
年,卷(期):2024.50(4)
  • 37