首页|基于代价参考粒子滤波器组的多目标检测前跟踪算法

基于代价参考粒子滤波器组的多目标检测前跟踪算法

扫码查看
针对图像序列中多目标检测和跟踪算法结构复杂、计算量大、性能降低等问题,提出一种基于代价参考粒子滤波器组的多目标检测前跟踪(Cost-reference particle filter bank based multi-target track-before-detect,CRPFB-MTBD)算法,将多目标跟踪问题转换为序贯地检测和跟踪多个单目标的问题.首先,采用代价参考粒子滤波器组序贯地估计所有可能单目标状态序列;其次,基于所有可能单目标状态序列的欧氏距离和累积代价确定目标数量;最后,根据累积代价判断每个目标出现和消失的具体时刻.仿真实验验证了CRPFB-MTBD的优良性能,与基于传统粒子滤波的多目标检测前跟踪算法(Particle filter based multi-target track-before-detect,PF-MTBD)、基于概率假设密度的检测前跟踪算法(Probabil-ity hypothesis density based track-before-detect,PHD-TBD)和基于伯努利滤波的检测前跟踪算法(Bernoulli based track-before-detect,Bernoulli-TBD)相比,CRPFB-MTBD的目标状态序列和数量估计结果最佳,且平均单次运行时间极短.
A Multi-target Track-before-detect Algorithm Based on Cost-reference Particle Filter Bank
Aiming at the problems of complex structure,increasing computation and decreasing performance of multiple targets detection and tracking algorithms in image sequences,a cost-reference particle filter bank based multi-target track-before-detect(CRPFB-MTBD)algorithm is proposed.In this work,the target tracking problem is converted into a problem of sequentially detecting and tracking multiple single targets.First,a cost reference particle filter bank is used to sequentially estimate all possible single targets'state sequences;secondly,the number of targets is determined based on the Euclidean distances and cumulative costs of all possible single targets'state sequences;finally,the specific moment when each target appears and disappears is determined based on the cumu-lative cost.The simulation experiment verified the excellent performance of CRPFB-MTBD.Compared with the traditional particle filter based multitarget track-before-detect(PF-MTBD)algorithm,probability hypothesis dens-ity based track-before-detect(PHD-TBD),and Bernoulli filter based track-before-detect(Bernoulli-TBD),CRPFB-MTBD has the best target state sequence and quantity estimation results,and the average single running time is extremely short.

Multi-target trackingtrack-before-detect(TBD)particle filtercost-reference particle filter bank(CRPFB)filter bank

卢锦、马令坤、吕春玲、章为川、Sun Chang-Ming

展开 >

陕西科技大学电子信息与人工智能学院 西安 710021 中国

施耐德(西安)创新技术有限公司 西安 710121 中国

格里菲斯大学集成与智能系统研究所 布里斯班 4111 澳大利亚

联邦科学与工业研究组织Data61中心 悉尼 1710 澳大利亚

展开 >

多目标跟踪 检测前跟踪 粒子滤波 代价参考粒子滤波器组 滤波器组

国家自然科学基金

61801281

2024

自动化学报
中国自动化学会 中国科学院自动化研究所

自动化学报

CSTPCD北大核心
影响因子:1.762
ISSN:0254-4156
年,卷(期):2024.50(4)
  • 17