首页|基于序列注意力和局部相位引导的骨超声图像分割网络

基于序列注意力和局部相位引导的骨超声图像分割网络

扫码查看
在超声辅助的骨科手术导航中,需要从采集的超声图像序列中精确分割出骨结构,并展示给医生,来辅助医生进行术中决策.但是,图像噪声、成像伪影以及模糊的骨边界导致从超声图像序列中精确分割提取骨结构十分困难.为解决该问题,提出一种新的基于序列注意力与局部相位引导的骨超声图像分割网络.该网络一方面自适应地利用超声序列帧之间的关系即序列注意力来辅助骨结构的语义分割.另一方面,该网络通过引入局部相位引导模块,突出骨边缘信息,进一步提高分割精度.利用包含19 050幅图像的骨超声数据集,进行交叉实验、消融实验并与最新的超声骨分割方法进行比较.实验结果表明所提方法对骨结构分割精度高,优于现有的超声骨分割方法.
Bone Ultrasound Segmentation Network Based on Sequential Attention and Local Phase Guidance
In the ultrasound assisted navigation of orthopaedics,the bone structure needs to be segmented accur-ately from the collected ultrasound images and displayed to the doctor to assist the intraoperative decision-making.However,it is difficult to segment bone structures from ultrasound images because of imaging noises,shadow arti-facts and blurred bone boundaries.For solving this problem,this paper proposes a bone ultrasound image segmenta-tion network based on sequential attention and local phase guidance.On the one hand,the network adaptively uses the relationship between frames of ultrasound sequence,that is,sequence attention,to assist the semantic segmenta-tion of bone structures.On the other hand,the local phase guidance module is introduced to highlight the bone edge information and further improve the segmentation accuracy.We performed the cross validation,ablation ex-periments and the comparison experiments with the state-of-arts by using a dataset that contained 19 050 bone ul-trasound images.The experimental results show that the proposed method has high accuracy and is superior to the existing bone segmentation methods.

Orthopaedics navigationultrasound image segmentationlocal phasesequence attention

陈芳、张道强、廖洪恩、赵喆

展开 >

南京航空航天大学计算机科学与技术学院 南京 211106

清华大学医学院 北京 100084

清华大学附属北京清华长庚医院骨科与运动医学中心 北京 102218

骨科导航 超声图像分割 局部相位 序列注意力

国家自然科学基金国家自然科学基金中国博士后科学基金中国博士后科学基金

U20A20389619012142021T1403222020M671484

2024

自动化学报
中国自动化学会 中国科学院自动化研究所

自动化学报

CSTPCD北大核心
影响因子:1.762
ISSN:0254-4156
年,卷(期):2024.50(5)
  • 2