首页|基于料面视频图像分析的高炉异常状态智能感知与识别

基于料面视频图像分析的高炉异常状态智能感知与识别

扫码查看
智能感知、精准识别高炉(Blast furnace,BF)异常状态对高炉调控优化和稳定运行至关重要,但高炉内部的黑箱状态致使传统检测方法难以直接感知并准确识别多种高炉异常状态.新型工业内窥镜可获取大量料面视频图像,为直接观测炉内运行状态提供了全新的手段.基于此,提出一种基于料面视频图像分析的高炉异常状态智能感知与识别方法.首先,提出基于多尺度纹理模糊C均值(Multi-scale texture fuzzy C-means,MST-FCM)聚类的高温煤气流区域提取方法,准确获取煤气流图像,并提取煤气流图像多元特征;其次,提出基于特征编码的高维特征降维方法,结合自适应K-means++算法,实现煤气流异常状态的粗粒度感知;在此基础上,通过改进雅可比-傅立叶矩(Jacobi-Fourier moments,JFM)提取煤气流图像深层特征变化趋势,进而提出细粒度煤气流异常状态感知方法;最后,基于煤气流异常状态感知结果,结合料面视频图像,提出多级残差通道注意力模块(Multi-level residual channel attention module,MRCAM),建立高炉异常状态识别模型ResVGGNet,实现高炉煤气流异常、塌料和悬料的精准在线识别.实验结果表明,所提方法能准确识别不同的高炉异常状态且识别速度快,可为高炉平稳运行提供重要保障.
Intelligent Perception and Recognition of Blast Furnace Anomalies via Burden Surface Video Image Analysis
The intelligent perception and precise recognition of blast furnace(BF)anomalies are important for BF regulation,optimization and stable operation.However,the opaque nature of the internal workings of the BF makes it difficult for traditional detection methods to directly perceive and accurately recognize various BF anomalies.The novel industrial endoscope can capture a large number of BF burden surface video images,providing a new way for direct observation of the furnace's operational status.Based on this,an intelligent perception and precise recogni-tion method for BF anomalies is proposed via burden surface video image analysis.Firstly,a method for extracting high-temperature gas flow regions based on multi-scale texture fuzzy C-means(MST-FCM)clustering is proposed to accurately obtain gas flow images and extract multi-features of gas flow images.Secondly,a high-dimensional fea-ture dimensionality reduction method based on feature encoding is proposed,which is combined with the adaptive K-means++algorithm to achieve coarse-grained perception of gas flow anomalies.On this basis,a fine-grained per-ception method for gas flow anomalies is proposed by refining Jacobi-Fourier moments(JFM)to extract the deep feature change trend of gas flow images.Finally,based on the perception results of gas flow anomalies,and com-bined with BF video images,a multi-level residual channel attention module(MRCAM)is put forward and the BF anomalies recognition model ResVGGNet is established.This model achieves precise and online recognition of gas flow anomalies,collapsing and hanging burden surface in the BF.Experimental results demonstrate that the pro-posed method can accurately recognize different BF anomalies with a fast recognition speed,providing crucial assur-ance for the smooth operation of the BF.

Blast furnace(BF)burden surface imageBF anomalies perceptionBF anomalies recognitionmulti-level residual channel attention module(MRCAM)

朱霁霖、桂卫华、蒋朝辉、陈致蓬、方怡静

展开 >

中南大学自动化学院 长沙 410083

湘江实验室 长沙 410205

高炉 料面图像 高炉异常状态感知 高炉异常状态识别 多级残差通道注意力模块

国家重大科研仪器研制项目国家自然科学基金基础科学中心项目国家自然科学基金湘江实验室重大项目

61927803619881016227335922XJ01005

2024

自动化学报
中国自动化学会 中国科学院自动化研究所

自动化学报

CSTPCD北大核心
影响因子:1.762
ISSN:0254-4156
年,卷(期):2024.50(7)
  • 1
  • 8