首页|一种面向航空母舰甲板运动状态预估的鲁棒学习模型

一种面向航空母舰甲板运动状态预估的鲁棒学习模型

扫码查看
航母甲板在风、浪、流等因素影响下做六自由度不规则运动,影响舰载机着舰精度。航母甲板运动预估与补偿是自动着舰系统的重要功能之一,也是提高舰载机着舰安全性与成功率的关键技术之一。为此,提出一种面向甲板运动预估的鲁棒学习模型,通过基本构建单元自适应演化出复杂学习系统。构建单元的训练采用非梯度的伪逆学习策略,提高了训练效率,简化了学习控制超参数调优;构建单元的架构设计采用数据驱动的策略,简化了架构超参数调优;采用图拉普拉斯正则化方法提高了模型对噪声和意外扰动的鲁棒性。通过某型航母在中等海况条件下以典型航速巡航时的仿真实验,验证了所提方法在甲板纵摇、横摇以及垂荡运动预估问题中的有效性及鲁棒性。
A Robust Learning Model for Deck Motion Prediction of Aircraft Carrier
The irregular deck motion of the aircraft carrier in six-degree freedom is generally caused by wind,waves,and currents,which affects the precision of aircraft landings.Aircraft carrier deck motion prediction and compensation are important functions of automatic landing systems as well as key technologies improving the safety and success rate of aircraft landing.In this paper,a robust learning model for deck motion prediction was presented,which constructs complex learning systems through the adaptive evolution of basic building blocks.The training of these building blocks employs a non-gradient pseudoinverse learning strategy,which improves training efficiency and simplifies the tuning of learning control hyperparameters.The architecture design of the building blocks adopts a data-driven approach,simplifying architectural hyperparameter tuning.A graph Laplace regularization term was employed in order to enhance the robustness of the model against noise and unexpected perturbations.Through simulation experiments conducted on a specific aircraft carrier cruising at a typical speed under moderate sea condi-tions,the effectiveness and robustness of the proposed method in predicting the pitch,roll,and heave of the deck are verified.

Aircraft carrierdeck motion predictionrobustnessmachine learningsimulation validation

王可、徐明亮、李亚飞、姜晓恒、鲁爱国、李鉴

展开 >

郑州大学计算机与人工智能学院 郑州 450001

武汉数字工程研究 所武汉 430074

航空母舰 甲板运动预估 鲁棒性 机器学习 仿真验证

国家自然科学基金国家自然科学基金国家自然科学基金中国博士后科学基金海洋防务技术创新中心创新基金河南省自然科学基金

6203601061972362618023512020M682348JJ-2022-709-01232300421235

2024

自动化学报
中国自动化学会 中国科学院自动化研究所

自动化学报

CSTPCD北大核心
影响因子:1.762
ISSN:0254-4156
年,卷(期):2024.50(9)