自动化学报2024,Vol.50Issue(9) :1804-1817.DOI:10.16383/j.aas.c210012

多阶段注意力胶囊网络的图像分类

Multi-stage Attention-based Capsule Networks for Image Classification

宋燕 王勇
自动化学报2024,Vol.50Issue(9) :1804-1817.DOI:10.16383/j.aas.c210012

多阶段注意力胶囊网络的图像分类

Multi-stage Attention-based Capsule Networks for Image Classification

宋燕 1王勇1
扫码查看

作者信息

  • 1. 上海理工大学控制科学与工程系 上海 200093
  • 折叠

摘要

针对传统的胶囊网络(Capsule network,CapsNet)特征提取不充分的问题,提出一种图像分类的多阶段注意力胶囊网络模型.首先,在卷积层对低层特征和高层特征分别采用注意力(Spatial attention,SA)和通道注意力(Channel attention,CA)来提取有效特征;然后,提出基于向量的注意力(Vector attention,VA)机制作用于动态路由层,增加对重要胶囊的关注,进而提高低层胶囊对高层胶囊预测的准确性;最后,在五个公共数据集上进行图像分类的对比实验.结果表明,所提出的CapsNet模型在分类精度和鲁棒性上优于其他胶囊网络模型,在仿射变换图像重构方面也表现良好.

Abstract

Aiming to address the inadequate feature extraction problems in the traditional capsule networks(CapsNets),a multi-stage attention-based CapsNet model is proposed in this paper for image classification.Firstly,spatial attention(SA)and channel attention(CA)are used to extract effective features in the convolutional layer from low-level features and high-level features,respectively.Then,attention mechanism based on vector direction is introduced into the dynamic routing layer to enhance the focus on the important capsules,thereby improving the prediction accuracy of the low-layer capsules to the high-layer capsules.Finally,the comparison experiments on im-age classification are carried out on five public datasets.The experimental results show that the proposed CapsNet outperforms other CapsNets at the classification accuracy and the robustness,and its shows a good performance on the image reconstruction for affine images.

关键词

图像分类/胶囊网络/注意力机制/多阶段/鲁棒性

Key words

Image classification/capsule network(CapsNet)/attention mechanism/multi-stage/robustness

引用本文复制引用

基金项目

国家自然科学基金(62073223)

上海市自然科学基金(22ZR 1443400)

航天飞行动力学技术国防科技重点实验室开放课题(6142210200304)

出版年

2024
自动化学报
中国自动化学会 中国科学院自动化研究所

自动化学报

CSTPCD北大核心
影响因子:1.762
ISSN:0254-4156
段落导航相关论文