首页|基于SCN数据模型的SISO非线性自适应控制

基于SCN数据模型的SISO非线性自适应控制

扫码查看
针对一类难以建立精确模型的单输入单输出(Single-input single-output,SISO)非线性离散动态系统,提出了一种数据驱动模型的自适应控制方法。所提方法首先设计具有直链与增强结构的随机配置网络(Stochastic configuration network,SCN),建立了一种可同时表征非线性系统低阶线性部分与高阶非线性项(未建模动态)的数据驱动模型,并采用增量学习方法与监督机制,对模型结构与模型参数进行同步更新优化,保证了数据驱动模型的无限逼近能力,解决了传统自适应控制采用交替辨识算法存在的建模精度低、模型收敛性无法保证的问题。进而利用直链部分与增强部分,分别设计了线性控制器及虚拟未建模动态补偿器,建立了基于SCN数据驱动模型的自适应控制新方法,分析了其稳定性与收敛性,通过数值仿真实验和采用交替辨识算法的传统自适应控制方法进行对比,实验结果表明了所提方法的有效性。
Adaptive Control of SISO Nonlinear System Using Data-driven SCN Model
For a class of single-input single-output(SISO)nonlinear discrete dynamical systems which are difficult to establish an accurate model,a novel adaptive control method is proposed based on data-driven model.In the pro-posed approach,stochastic configuration network(SCN)is first employed to build the data-driven nonlinear system model,which adopts direct link and enhancement nodes to approximate the low-order linear and the high-order nonlinear parts(unmodeled dynamics)of system,respectively.Besides,this paper employed an incremental learn-ing algorithm and supervision mechanism to optimize the model structure and model parameters synchronously,which guarantee the universal approximation property of the data-driven model,solving the problems of low model-ing accuracy and unguaranteed model convergence existing in traditional adaptive control with alternate identifica-tion algorithm.Then,the direct link and enhancement nodes are used to design the linear controller and virtual un-modeled dynamics compensator respectively.A new adaptive control approach based on SCN data-driven model is established,and the stability and convergence of the proposed control method are proved.Finally,simulation com-parisons between our proposed method and the classic adaptive control method with alternate identification al-gorithm are made,showing the effectiveness of the proposed method.

Adaptive controlstochastic configuration network(SCN)supervision mechanismunmodeled dynam-icdata-driven model

代伟、张政煊、杨春雨、马小平

展开 >

中国矿业大学信息与控制工程学院 徐州 221116

北京科技大学自动化学院 北京 100083

自适应控制 随机配置网络 监督机制 未建模动态 数据驱动模型

国家自然科学基金江苏省自然科学基金流程工业综合自动化国家重点实验室开放课题基金

61973306BK202000862020-KF-21-10

2024

自动化学报
中国自动化学会 中国科学院自动化研究所

自动化学报

CSTPCD北大核心
影响因子:1.762
ISSN:0254-4156
年,卷(期):2024.50(10)