自动化学报2024,Vol.50Issue(10) :2013-2021.DOI:10.16383/j.aas.c210303

基于网格重构学习的染色体分类模型

A Grid Reconstruction Learning Model for Chromosome Classification

张林 易先鹏 王广杰 范心宇 刘辉 王雪松
自动化学报2024,Vol.50Issue(10) :2013-2021.DOI:10.16383/j.aas.c210303

基于网格重构学习的染色体分类模型

A Grid Reconstruction Learning Model for Chromosome Classification

张林 1易先鹏 2王广杰 2范心宇 2刘辉 1王雪松1
扫码查看

作者信息

  • 1. 中国矿业大学地下空间智能控制教育部工程研究中心 徐州 221116;中国矿业大学信息与控制工程学院 徐州 221116
  • 2. 中国矿业大学信息与控制工程学院 徐州 221116
  • 折叠

摘要

染色体的分类是核型分析的重要任务之一.因其柔软易弯曲,且类间差异小、类内差异大等特点,其精准分类仍然是一个具有挑战性的难题.对此,提出一种基于网格重构学习(Grid reconstruction learning,GRiCoL)的染色体分类模型.该模型首先将染色体图像网格化,提取局部分类特征;然后通过重构网络对全局特征进行二次提取;最后完成分类.相比于现有几种先进方法,GRiCoL同时兼顾局部和全局特征提取更有效的分类特征,有效改善染色体弯曲导致的分类性能下降,参数规模合理.通过基于G带、荧光原位杂交(Fluorescence in situ hybridization,FISH)、Q带染色体公开数据集的实验表明:GRiCoL能够更好地弱化染色体弯曲带来的影响,在不同数据集上的分类准确度均优于现有分类方法.

Abstract

Chromosome classification is one of the key tasks of karyotype analysis.However,due to chromosomes are flexible hence exhibit less difference between different types while significant difference within same type,accur-ate classification of chromosome remains a challenging issue.In this paper,a chromosome classification model based on grid reconstruction learning(GRiCoL)is proposed.To weaken the impact of the bendy state,chromosome im-ages are first grid-enabled for feature extraction separately.Subsequentially,global features are extracted for the second time by reconstruction network,which is followed by classification.Compared with the state-of-the-art methods,the proposed GRiCoL can get more efficient discriminable features based on both local and global fea-tures,therefore can overcome the adverse effects of bandy form of chromosome with reasonable parameter scale.Ex-periments on public G band,fluorescence in situ hybridization(FISH)as well as Q band chromosome datasets show that GRiCoL can extract discriminative features that weaken the bending of chromosomes more efficiently,mean-while,higher performance was obtained as compared to current classification algorithms.

关键词

核型分析/染色体分类/特征重构/网格化

Key words

Karyotype analysis/chromosome classification/feature reconstruction/gridding

引用本文复制引用

基金项目

国家自然科学基金(61971422)

国家自然科学基金(31871337)

出版年

2024
自动化学报
中国自动化学会 中国科学院自动化研究所

自动化学报

CSTPCD北大核心
影响因子:1.762
ISSN:0254-4156
段落导航相关论文