首页|基于组-信息蒸馏残差网络的轻量级图像超分辨率重建

基于组-信息蒸馏残差网络的轻量级图像超分辨率重建

扫码查看
目前,基于深度学习的超分辨算法已经取得了很好性能,但这些方法通常具有较大内存消耗和较高计算复杂度,很难应用到低算力或便携式设备上。为了解决这个问题,设计一种轻量级的组-信息蒸馏残差网络(Group-information dis-tillation residual network,G-IDRN)用于快速且精确的单图像超分辨率任务。具体地,提出一个更加有效的组-信息蒸馏模块(Group-information distillation block,G-IDB)作为网络特征提取基本块。同时,引入密集快捷连接,对多个基本块进行组合,构建组-信息蒸馏残差组(Group-information distillation residual group,G-IDRG),捕获多层级信息和有效重利用特征。另外,还提出一个轻量的非对称残差Non-local模块,对长距离依赖关系进行建模,进一步提升超分性能。最后,设计一个高频损失函数,去解决像素损失带来图像细节平滑的问题。大量实验结果表明,该算法相较于其他先进方法,可以在图像超分辨率性能和模型复杂度之间取得更好平衡,其在公开测试数据集B100上,4倍超分速率达到56 FPS,比残差注意力网络快15倍。
G-IDRN:A Group-information Distillation Residual Network for Lightweight Image Super-resolution
Recently,most super-resolution algorithms based on deep learning have achieved satisfactory results.However,these methods generally consume large memory and have high computational complexity,and are diffi-cult to apply to low computing power or portable devices.To address this problem,this paper introduces a light-weight group-information distillation residual network(G-IDRN)for fast and accurate single image super-resolution.Specially,we propose a more effective group-information distillation block(G-IDB)as the basic block for feature ex-traction.Simultaneously,we introduce dense shortcut to combine them to construct a group-information distilla-tion residual group(G-IDRG),which is used to capture multi-level information and effectively reuse the learned fea-tures.Moreover,a lightweight asymmetric residual Non-local block is proposed to model the long-range dependen-cies and further improve the performance of super-resolution.Finally,a high-frequency loss function is designed to alleviate the problem of smoothing image details caused by pixel-wise loss.Extensive experiments show the pro-posed algorithm achieves a better trade-off between image super-resolution performance and model complexity against other state-of-the-art super-resolution methods and gets 56 FPS on the public test dataset B100 with a scale factor of 4 times,which is 15 times faster than the residual channel attention network.

Residual networksuper-resolutionfeature distillationhigh-frequency loss

王云涛、赵蔺、刘李漫、陶文兵

展开 >

中南民族大学生物医学工程学院 武汉 430074

华中科技大学人工智能与自动化学院 武汉 430074

残差网络 超分辨率 特征蒸馏 高频损失

国家自然科学基金国家自然科学基金湖北省自然科学基金

61976227621760962019CFB622

2024

自动化学报
中国自动化学会 中国科学院自动化研究所

自动化学报

CSTPCD北大核心
影响因子:1.762
ISSN:0254-4156
年,卷(期):2024.50(10)