首页|基于深度学习的群组推荐方法研究综述

基于深度学习的群组推荐方法研究综述

扫码查看
群组推荐在信息检索与数据挖掘领域近年来备受关注,其旨在从海量候选集中挑选出一组用户可能感兴趣的项目。随着深度学习技术的不断发展,基于深度学习的群组推荐方法大量涌现。鉴于此,首先介绍群组推荐问题的背景知识,然后系统综述数据获取方法,全面评述近年来基于深度学习的群组推荐算法,并进行系统分类与深入分析。此外,还归纳了适用于深度学习方法的群组推荐数据集和评价方法,对各类推荐算法进行对比实验分析与讨论。最后,针对本领域的研究难点进行深入探讨,并提出未来有待深入研究的方向。
A Comprehensive Review of Group Recommendation Methods Based on Deep Learning
Group recommendation has emerged as a highly active research topic in the fields of information retriev-al and data mining in recent years.Its objective is to select a group of items from a large candidate set that is likely to be of interest to a set of users.With the advancement of deep learning,numerous group recommendation meth-ods based on deep learning have been proposed.This paper provides a brief introduction to the background know-ledge of this problem.It reviews the methods of data acquisition and conducts a comprehensive review,systematic classification,and in-depth analysis of group recommendation algorithms based on deep learning.In addition,this paper outlines some group recommendation datasets and evaluation methods suitable for deep methods,and con-ducts comparative experimental analysis and discussion on various recommendation algorithms.Finally,the re-search challenges in this field were analyzed,and valuable future research directions were discussed.

Group recommendationrecommender system overviewdeep learninggroup representation learning

郑楠、章颂、刘玉桥、王雨桐、王飞跃

展开 >

中国科学院自动化研究所多模态人工智能系统全国重点实验室 北京 100190

中国科学院大学人工智能学院 北京 100049

中国科学院自动化研究所复杂系统管理与控制国家重点实验室 北京 100190

群组推荐 推荐系统综述 深度学习 群组表示学习

2024

自动化学报
中国自动化学会 中国科学院自动化研究所

自动化学报

CSTPCD北大核心
影响因子:1.762
ISSN:0254-4156
年,卷(期):2024.50(12)