自动化应用2024,Vol.65Issue(1) :35-37.DOI:10.19769/j.zdhy.2024.01.011

BP神经网络在垃圾焚烧电厂酸性气体排放控制中的应用

Application of BP Neural Network in Acid Gas Emission Control of Waste Incineration Power Plant

游敏
自动化应用2024,Vol.65Issue(1) :35-37.DOI:10.19769/j.zdhy.2024.01.011

BP神经网络在垃圾焚烧电厂酸性气体排放控制中的应用

Application of BP Neural Network in Acid Gas Emission Control of Waste Incineration Power Plant

游敏1
扫码查看

作者信息

  • 1. 仙游兴鸿环保电力有限公司,福建莆田 351261
  • 折叠

摘要

对于采用半干法的大多数垃圾焚烧发电厂,控制酸性气体排放浓度的主要手段是调节脱酸塔入口石灰浆流量.传统的PID控制采用CEMS实测数据作为反馈信号调节石灰浆流量,但脱酸塔入口到烟囱烟气采样点距离远,反应时间长,控制效果不佳.为此,引入BP人工神经网络遗传算法,并利用人工控制模式下积累的大量过程数据训练人工神经网络,以替代人工控制.

Abstract

For most waste incineration power plants that use semi dry methods,the main means of controlling the concentration of acidic gas emissions is to regulate the lime slurry flow rate at the inlet of the deacidification tower.Traditional PID control uses measured data from CEMS as feedback signal to regulate the lime slurry flow,but the distance from the inlet of the deacidification tower to the sampling point of the chimney flue gas is far,the reaction time is long,and the control effect is poor.To this end,the BP artificial neural network genetic algorithm is introduced to train the artificial neural network using a large amount of process data accumulated under manual control mode,in order to replace manual control.

关键词

大滞后/串级控制/前馈控制/BP神经网络/遗传算法/大数据

Key words

large lag/cascade control/feed-forward control/BP neural network/genetic algorithm/big data

引用本文复制引用

出版年

2024
自动化应用
重庆西南信息有限公司

自动化应用

影响因子:0.156
ISSN:1674-778X
参考文献量3
段落导航相关论文