首页|采煤机截割部齿轮故障预测模型的设计及试验

采煤机截割部齿轮故障预测模型的设计及试验

扫码查看
井下采煤机结构复杂、工况环境差,容易出现各类故障,且处置难度较大.针对MG1000/2500-WD型采煤机截割部齿轮故障诊断需求,结合卷积神经网络(CNN)的故障特征提取原理,汾西矿业集团设备修造厂设计了深度卷积神经网络(DCNN)故障预测模型,并实施了数据训练及模型测试.结果表明,预测模型的故障甄别准确率达到98.17%,故障训练值与标准值的准确率达到99.13%.
Design and Test of Fault Prediction Model of Coal Miner Cutting Gear
The underground shearer structure is complex,the working environment is poor,prone to all kinds of faults,and the disposal is difficult.According to the gear fault diagnosis requirements of MG1000/2500-WD shearer,combined with the fault feature extraction principle of CNN(convolution neural network),Fenxi Mining Group Equipment Repair Factory designed a DCNN(deep convolution neural network)fault prediction model,and implemented the data training and model testing.The results show that the fault screening accuracy of the prediction model reached 98.17%,the accuracy of fault training value and standard value reached 99.13%.

coal miner cutting gearfault diagnosisfault prediction modelCNN

唐广洲

展开 >

汾西矿业集团公司机电管理部,山西介休 032000

采煤机截割部齿轮 故障诊断 故障预测模型 卷积神经网络

2024

自动化应用
重庆西南信息有限公司

自动化应用

影响因子:0.156
ISSN:1674-778X
年,卷(期):2024.65(1)
  • 4