自动化应用2024,Vol.65Issue(1) :127-128,131.DOI:10.19769/j.zdhy.2024.01.040

采煤机截割部齿轮故障预测模型的设计及试验

Design and Test of Fault Prediction Model of Coal Miner Cutting Gear

唐广洲
自动化应用2024,Vol.65Issue(1) :127-128,131.DOI:10.19769/j.zdhy.2024.01.040

采煤机截割部齿轮故障预测模型的设计及试验

Design and Test of Fault Prediction Model of Coal Miner Cutting Gear

唐广洲1
扫码查看

作者信息

  • 1. 汾西矿业集团公司机电管理部,山西介休 032000
  • 折叠

摘要

井下采煤机结构复杂、工况环境差,容易出现各类故障,且处置难度较大.针对MG1000/2500-WD型采煤机截割部齿轮故障诊断需求,结合卷积神经网络(CNN)的故障特征提取原理,汾西矿业集团设备修造厂设计了深度卷积神经网络(DCNN)故障预测模型,并实施了数据训练及模型测试.结果表明,预测模型的故障甄别准确率达到98.17%,故障训练值与标准值的准确率达到99.13%.

Abstract

The underground shearer structure is complex,the working environment is poor,prone to all kinds of faults,and the disposal is difficult.According to the gear fault diagnosis requirements of MG1000/2500-WD shearer,combined with the fault feature extraction principle of CNN(convolution neural network),Fenxi Mining Group Equipment Repair Factory designed a DCNN(deep convolution neural network)fault prediction model,and implemented the data training and model testing.The results show that the fault screening accuracy of the prediction model reached 98.17%,the accuracy of fault training value and standard value reached 99.13%.

关键词

采煤机截割部齿轮/故障诊断/故障预测模型/卷积神经网络

Key words

coal miner cutting gear/fault diagnosis/fault prediction model/CNN

引用本文复制引用

出版年

2024
自动化应用
重庆西南信息有限公司

自动化应用

影响因子:0.156
ISSN:1674-778X
参考文献量4
段落导航相关论文