首页|基于变分模态分解和SSA-LSTM的SCR脱硝系统入口NOx浓度预测

基于变分模态分解和SSA-LSTM的SCR脱硝系统入口NOx浓度预测

扫码查看
燃煤机组的SCR入口NOx浓度测量具有较大迟延、影响因素复杂和波动性大等特点,往往不能真实反映NOx浓度的实时变化.针对上述问题,提出一种基于变分模态分解(VMD)和SSA-LSTM的SCR入口NOx浓度的预测模型.首先采用变分模态分解法分解SCR入口NOx浓度,互信息选择算法选择与目标变量强相关的辅助变量;然后利用SSA算法寻优LSTM神经网络参数构建SSA-LSTM预测模型;最后进行VMD-SSA-LSTM与LSTM、VMD-LSTM的仿真对比实验.结果表明,VMD-SSA-LSTM预测模型具有更高的预测精度、更小的误差和更强的泛化能力.
Prediction of Inlet NOx Concentration in SCR Denitration System Based on Variational Mode Decomposition and SSA-LSTM
The measurement of NOx concentration at the SCR inlet of coal-fired power units has the characteristics of significant delay,complex influencing factors,and high volatility,often unable to accurately reflect the real-time changes in NOx concentration.A predictive model for SCR inlet NOx concentration based on variational mode decomposition(VMD)and SSA-LSTM is proposed to address the aforementioned issues.Firstly,the variational mode decomposition method is used to decompose the NOx concentration at the SCR inlet,and the mutual information selection algorithm selects auxiliary variables that are strongly correlated with the target variable.Then,the SSA algorithm is used to optimize the LSTM neural network parameters and construct an SSA-LSTM prediction model.Finally,conduct simulation comparative experiments between VMD-SSA-LSTM,LSTM,and VMD-LSTM.The results indicate that the VMD-SSA-LSTM prediction model has higher prediction accuracy,smaller errors,and stronger generalization ability.

NOx concentration predictionSCR denitrification systemvariational mode decompositionSSA algorithmlong short-term memory neural network

成静怡、庞英杰

展开 >

华北电力大学自动化系,河北保定 071003

NOx浓度预测 SCR脱硝系统 变分模态分解 SSA算法 长短期记忆神经网络

2024

自动化应用
重庆西南信息有限公司

自动化应用

影响因子:0.156
ISSN:1674-778X
年,卷(期):2024.65(1)
  • 6