首页|基于改进粒子群算法的厂级AGC优化分配方法

基于改进粒子群算法的厂级AGC优化分配方法

扫码查看
针对发电厂厂级AGC指令分配中未能兼顾机组深度调峰成本且常规算法难以得到最佳优化结果的问题,提出了一种基于煤耗成本与投油成本的深度调峰成本模型.将混沌变量引入粒子群算法优化过程,通过对每代粒子中的优秀个体进行混沌处理,提升了算法跳出局部最优解的能力,并通过惯性权重及学习因子的改变提升算法的收敛速度,使得粒子群算法更适用于解决多参数优化问题.利用改进粒子群算法模拟对某厂级调度火电厂AGC指令分解过程.结果表明,此算法在厂级AGC指令优化分配问题中能得到较好优化效果,降低电厂的整体能耗水平,提升整体经济收益.
Optimal Allocation Method of Factory-Level AGC Based on Improved Particle Swarm Algorithm
Aiming at the problem that the deep peak shaving cost of units is not taken into account in the factory-level AGC command allocation of power plants and the conventional algorithm is difficult to obtain the optimal results,a deep peak shaving cost model based on coal consumption cost and oil input cost is proposed.The chaotic variable is introduced into the optimization process of particle swarm optimization algorithm.The ability of the algorithm to jump out of the local optimal solution is improved by chaotic processing of the excellent individuals in each generation of particles.The convergence speed of the algorithm is improved by changing the inertia weight and learning factor,which makes the particle swarm optimization algorithm more suitable for solving multi parameter optimization problems.An improved particle swarm optimization algorithm is used to simulate the factory-level AGC instruction decomposition process of a power plant dispatching.The results show that this algorithm can achieve better optimization effect in the optimal allocation of factory-level AGC commands at the plant level,reduce the overall energy consumption level of the power plant,and improve the overall economic benefits.

factory-level AGCload distributionoptimization algorithmchaotic mapping

邢耀敏

展开 >

内蒙古大唐国际托克托发电责任有限责任公司,内蒙古呼和浩特 010200

厂级AGC 负荷分配 优化算法 混沌映射

2024

自动化应用
重庆西南信息有限公司

自动化应用

影响因子:0.156
ISSN:1674-778X
年,卷(期):2024.65(1)
  • 10