首页|电力变压器内部机械损伤的自动化识别研究

电力变压器内部机械损伤的自动化识别研究

扫码查看
使用传统的判断方式识别电力变压器内部机械损伤时存在识别困难与识别不精准的问题,为此,构建了电力变压器内部机械损伤融合识别模型,以实现对内部各种机械损伤的有效识别与判断.CNN与LSTM算法的应用提高了模型的整体识别效率.通过仿真实验,以准确率指标和交叉熵损失指标验证了该模型与传统判断方式相比有较高的应用价值.
Research on Automatic Identification of Internal Mechanical Damage in Power Transformers
When using traditional judgment methods to identify internal mechanical damage in power transformers,there are difficulties and inaccuracies in identification.Therefore,a fusion recognition model for internal mechanical damage in power transformers is constructed to effectively identify and judge various internal mechanical damages.The application of CNN and LSTM algorithms has improved the overall recognition efficiency of the model.Through simulation experiments,the accuracy index and cross entropy loss index were used to verify the high application value of this model compared to traditional judgment methods.

power transformerinternal mechanical damageautomated identificationfusion model

张家玮

展开 >

兰州倚能电力设计咨询有限公司,甘肃兰州 730050

电力变压器 内部机械损伤 自动化识别 融合模型

2024

自动化应用
重庆西南信息有限公司

自动化应用

影响因子:0.156
ISSN:1674-778X
年,卷(期):2024.65(2)
  • 6