首页|基于注意力的图像去雾算法探索研究

基于注意力的图像去雾算法探索研究

扫码查看
图像去雾的方法可粗略划分为基于图像增强的去雾算法、基于物理模型的去雾算法、基于深度学习的去雾算法 3 类.将注意力机制引入传统的暗通道先验去雾算法,可克服该算法存在的某些不足.经MATLAB平台进行实验仿真,并利用主观方法(主观感知)与客观方法(峰值信噪比)对比分析仿真结果,证明引入注意力机制的暗通道先验去雾改进算法具有优化传统暗通道先验算法的效果.
Research on Attention-Based Image Defogging Algorithm
The methods of image defogging can be roughly divided into three categories:Image enhancement based defogging algorithms,physical model-based defogging algorithms,and deep learning based dehazing algorithms.By introducing attention mechanisms into traditional dark channel prior defogging algorithms,certain shortcomings of this algorithm can be overcome.Experimental simulation was conducted on the MATLAB platform,and the simulation results were compared and analyzed using subjective methods(subjective perception)and objective methods(peak signal-to-noise ratio)to demonstrate that the improved dark channel prior defogging algorithm with attention mechanism has the effect of optimizing traditional dark channel prior algorithms.

dark channelattention mechanismimage defoggingpeak signal-to-noise ratio

梁新平

展开 >

广西翅冀钢铁有限公司焦化厂,广西梧州 543399

暗通道 注意力机制 图像去雾 峰值信噪比

2024

自动化应用
重庆西南信息有限公司

自动化应用

影响因子:0.156
ISSN:1674-778X
年,卷(期):2024.65(2)
  • 1
  • 8