自动化应用2024,Vol.65Issue(4) :139-142,145.DOI:10.19769/j.zdhy.2024.04.046

基于声发射信息熵均距的滑动轴承润滑状态故障诊断研究

Research on Fault Diagnosis of Sliding Bearing Lubrication States Based on Acoustic Emission Information Entropy Average Distance

谭浩宇 颜毅斌 张骁 陈清化
自动化应用2024,Vol.65Issue(4) :139-142,145.DOI:10.19769/j.zdhy.2024.04.046

基于声发射信息熵均距的滑动轴承润滑状态故障诊断研究

Research on Fault Diagnosis of Sliding Bearing Lubrication States Based on Acoustic Emission Information Entropy Average Distance

谭浩宇 1颜毅斌 1张骁 1陈清化1
扫码查看

作者信息

  • 1. 湖南省高铁运行安全保障工程技术研究中心,湖南株洲 412000
  • 折叠

摘要

在声发射信号的信息熵距的基础上,提出了声发射信号的信息熵均距诊断方法,该方法能有效提升汽轮机上滑动轴承润滑状态的诊断精度,通过突出润滑状态的信息熵特征和改变信息熵点之间的距离算法,使不同润滑状态之间的差异更明显,以增强对润滑状态的准确识别能力.该效果在半干摩擦状态的诊断上表现最显著,并在实际机组上验证了该方法的有效性,为滑动轴承润滑状态的诊断和故障预测提供了更可靠的方法.

Abstract

On the basis of the information entropy distance of a coustic emission signals,an information entropy average distance diagnosis method for acoustic emission signals is proposed.This method can effectively improve the diagnostic accuracy of lubrication status of sliding bearings on steam turbines.By highlighting the information entropy characteristics of lubrication status and changing the distance algorithm between information entropy points,the differences between different lubrication statuses are more obvious to enhance the accurate recognition ability of lubrication status.This effect is most significant in the diagnosis of semi-dry friction state,and its effectiveness has been verified on actual units,providing a more reliable method for the diagnosis and fault prediction of sliding bearing lubrication state.

关键词

滑动轴承/润滑状态/声发射/信息熵/信息熵距

Key words

sliding bearing/lubrication state/AE signals/information entropy/information entropy distance

引用本文复制引用

基金项目

湖南省教育厅科学研究项目(19C1216)

湖南省教育厅科学研究项目(20C1226)

出版年

2024
自动化应用
重庆西南信息有限公司

自动化应用

影响因子:0.156
ISSN:1674-778X
参考文献量20
段落导航相关论文