自动化应用2024,Vol.65Issue(4) :170-171.DOI:10.19769/j.zdhy.2024.04.056

基于OneNET云平台的肺结节数据集的设计与实现

Design and Implementation of Pulmonary Nodule Dataset Based on OneNET Cloud Platform

任俊龙 张春茜 刘华康 栗梦媛
自动化应用2024,Vol.65Issue(4) :170-171.DOI:10.19769/j.zdhy.2024.04.056

基于OneNET云平台的肺结节数据集的设计与实现

Design and Implementation of Pulmonary Nodule Dataset Based on OneNET Cloud Platform

任俊龙 1张春茜 1刘华康 2栗梦媛1
扫码查看

作者信息

  • 1. 河北水利电力学院电气自动化系,河北沧州 061001
  • 2. 河北省沧州中西医结合医院感染性疾病科,河北沧州 061001
  • 折叠

摘要

肺癌的早期表现为肺CT图像中的微小结节,及早发现与治疗对于提高肺癌患者的生存率至关重要.近年来,目标检测技术逐渐被应用于医学图像处理领域,成为肺癌筛查的智能辅助手段.目标检测需要以大量数据为基础进行特征提取,其目标定位的精准性受训练数据集的直接影响,但现阶段我国没有可以直接进行目标检测的干净肺结节数据集.为此,该系统分别将预处理后的肺CT图像和目标检测后的肺CT图像上传至云平台实现数据共享,搭建了适用于我国的肺结节检测数据集,为计算机辅助诊断方法的研究提供了数据基础.

Abstract

Lung cancer has the highest incidence rate and mortality worldwide.Its early manifestation is small nodules in lung CT images,and early detection and treatment are crucial for improving the survival rate of lung cancer patients.In recent years,object detection technology has gradually been applied in the field of medical image processing,becoming an intelligent auxiliary means for lung cancer screening.Target detection requires a large amount of data as the basis for feature extraction,and the accuracy of target localization is directly affected by the training dataset.However,at present,there is no clean lung nodule dataset in China that can directly perform target detection.Therefore,this system uploads pre processed lung CT images and target detected lung CT images to the cloud platform for data sharing,and builds a lung nodule detection dataset suitable for China,providing a data foundation for the research of computer-aided diagnosis methods.

关键词

肺癌/数据集/OneNET云平台

Key words

lung cancer/data set/OneNET cloud platform

引用本文复制引用

基金项目

2022年河北省教育厅科学研究项目(ZC2022018)

河北省大学生创新创业训练计划项目(S202310085054)

出版年

2024
自动化应用
重庆西南信息有限公司

自动化应用

影响因子:0.156
ISSN:1674-778X
参考文献量3
段落导航相关论文