首页|基于DDPG算法的旋翼无人机智能跟踪方法

基于DDPG算法的旋翼无人机智能跟踪方法

扫码查看
针对旋翼无人机视觉伺服控制可视性约束差与控制效率低的问题,介绍四旋翼无人机的动力学模型与传统视觉伺服的基本原理;针对视觉伺服增益调节问题,提出了一种基于深度强化学习的旋翼无人机视觉伺服控制的马可科夫模型;并结合深度确定性策略梯度(DDPG)算法训练了模型,最终得到线速度和角速度 2 个解耦的伺服增益.结果表明,与传统的基于图像的视觉伺服(IBVS)方法相比,该方法能保证目标始终在视场中、飞行轨迹平滑、到达目标位置所需时间短,满足旋翼无人机视觉伺服控制可视性约束条件,同时,控制效率比传统控制方法高 23.5%.实验中该方法能在复杂的非线性环境中实现精确控制,增加了视觉伺服技术的应用场景.
Intelligent Tracking Method of Rotary-Wing UAV Based on Deep Reinforcement Learning
Introduce the dynamic model of quadcopter drones and the basic principles of traditional visual servoing to address the issues of poor visibility constraints and low control efficiency in visual servoing control of rotor drones.A Markov model for visual servo control of rotary-wing UAV based on deep reinforcement learning is proposed to address the issue of visual servo gain adjustment,and combined with the deep deterministic policy gradient(DDPG)algorithm,the model was trained,and finally two decoupled servo gains,namely linear velocity and angular velocity,were obtained.The results show that compared with traditional image-based visual servoing(IBVS)methods,this method can ensure that the target is always in the field of view,the flight trajectory is smooth,and the time required to reach the target position is short,meeting the visibility constraints of visual servoing control for rotary-wing UAV.At the same time,the control efficiency is 23.5%higher than traditional control methods.In the experiment,this method can achieve precise control in complex nonlinear environments,increasing the application scenarios of visual servo technology.

deep reinforcement learningrotary-wing UAVvisual servofield of view constraint

王悠、方林逸、韩立祥

展开 >

中国民用航空飞行学院,四川广汉 618307

深度强化学习 旋翼无人机 视觉伺服 视场约束

2024

自动化应用
重庆西南信息有限公司

自动化应用

影响因子:0.156
ISSN:1674-778X
年,卷(期):2024.65(5)
  • 22