首页|新能源接入下配网储能配置多目标自动优化方法

新能源接入下配网储能配置多目标自动优化方法

扫码查看
随着新能源的大规模接入,配电网的储能配置问题日益凸显.为解决该问题,提出了一种新能源接入下的配网储能配置多目标自动优化方法.根据当前储能配置优化标准的设定,设置目标函数;采用多阶方式扩大配网储能配置优化覆盖范围,设定多阶优化配置约束条件,以此为基础,构建分布式新能源配置多目标优化模型,采用收敛调度处理实现配置优化.结果表明,应用该方法优化后的配网储能配置平均响应延时能控制在 0.5 s以下,响应的平均能耗降低至 76 kWh,最终得出的荷电状态SOC由最初的 56%变为 40%,说明应用设计方法优化新能源储能配置的效果较好,具有实际的应用价值.
Multi-Objective Automatic Optimization Method of Distribution Network Energy Storage Configuration Considering New Energy Access
With the large-scale access of new energy,the problem of energy storage allocation in distribution network has become increasingly prominent.In order to solve this problem,this paper proposes a multi-objective automatic optimization method for energy storage configuration of distribution network under new energy access.The objective function was set according to the setting of the current energy storage configuration optimization standard.The multi-stage mode was used to expand the coverage of energy storage configuration optimization of distribution network,and the multi-stage optimal configuration constraints were set.On this basis,a distributed new energy configuration multi-objective optimization model is constructed,and the convergence scheduling processing is used to realize the configuration optimization.The test results show that the average response delay of the energy storage configuration of the distribution network optimized by the proposed method can be controlled below 0.5 s,the average energy consumption of the response is reduced to 76 kWh,and the final SOC of the state of charge is changed from 56%to 40%,which indicates that the application of the design method has a good effect on the optimization of new energy storage configuration and has practical application value.

new energy technologyaccess to distribution networkenergy storage configurationmulti-objective optimizationoptimization methodpower grid lap

朱丹

展开 >

南京南瑞继保工程技术有限公司,江苏南京 210000

新能源技术 接入配网 储能配置 多目标优化 优化方法 电网搭接

2024

自动化应用
重庆西南信息有限公司

自动化应用

影响因子:0.156
ISSN:1674-778X
年,卷(期):2024.65(5)
  • 8