首页|基于EMD-PSO-BiLSTM组合模型的短期风电功率预测

基于EMD-PSO-BiLSTM组合模型的短期风电功率预测

扫码查看
风电功率预测对风电并网的稳定运行具有重要意义.为了解决风电功率预测中的精度和模型稳定性问题,引入了EMD-PSO-BiLSTM模型.通过经验模态分解技术将原始风电功率序列分解为一系列固有模态函数,以有效捕捉数据中的多尺度特征,并为每个模态序列建立了各自的预测模型.鉴于双向长短时记忆神经网络良好的泛化能力,建立了基于BiLSTM的各模态预测模型.进一步采用粒子群算法优化了BiLSTM参数,解决了模型非线性、高维、多模态等问题,获得了各模态分量的最优模型,并通过汇总各模态分量的结果得到了风电功率预测值.最后,以湖南省某风电场的实际运行数据为例,验证了EMD-PSO-BiLSTM模型可以有效提高风电功率短期预测精度.
Short-Term Wind Power Prediction Based on EMD-PSO-BiLSTM Combined Model
Wind power prediction is of great significance for the stable operation of wind power connected to the grid.In order to solve the problems of accuracy and model stability in wind power prediction,EMD-PSO-BiLSTM model is introduced.By empirical mode decomposition,the original wind power sequence is decomposed into a series of inherent mode functions to effectively capture multi-scale features in the data,and a prediction model is established for each mode sequence.In view of the excellent generalization ability of bi-directional long short-term memory neural network,a prediction model of each mode based on BiLSTM is studied.Further,particle swarm optimization algorithm was used to optimize BiLSTM parameters to solve nonlinear,high-dimensional and multi-modal problems of the model,and the optimal model of each modal component was obtained,and then the predicted value of wind power was obtained by summarizing the results of each modal component.Finally,the actual operation data of a wind farm in Hunan Province is taken as an example to verify that the EMD-PSO-BiLSTM model can effectively improve the short-term prediction accuracy of wind power.

wind powershort-term predictionempirical mode decompositionparticle swarm optimizationbi-directional long short-term memory network

唐杰、李彬

展开 >

多电源地区电网运行与控制湖南省重点实验室(邵阳学院),湖南邵阳 422000

风电功率 短期预测 经验模态分解 粒子群算法 双向长短期记忆网络

2024

自动化应用
重庆西南信息有限公司

自动化应用

影响因子:0.156
ISSN:1674-778X
年,卷(期):2024.65(5)
  • 8