首页|强化学习技术在工业产品质检调度中的实践

强化学习技术在工业产品质检调度中的实践

扫码查看
针对工业产品质检调度问题,讨论了模拟退火算法和Q-Leaning强化学习算法的实践过程.首先描述了本次研究存在的问题,其次抽象出了质检顺序矩阵和质检时间矩阵并进行问题求解.在实际应用中,选择模拟退火算法还是Q-Learning算法取决于问题的特性和需求.若问题具有全局搜索需求,则模拟退火算法可能更适合;若问题可以建模为强化学习问题,则Q-Learning可能是更好的选择.以Q-Leaning对问题进行实践求解,得到工业产品质检调度甘特图,可为实际工业产品质检排程提供参考.
Practical of Reinforcement Learning Techniques in Industrial Product Quality Inspection Scheduling
In addressing the problem of industrial product quality inspection scheduling,this paper discusses the practical process of using both the simulated annealing algorithm and the Q-Learning reinforcement learning algorithm.It starts with a description of the problem at hand,and the abstraction of quality inspection order matrix and inspection time matrix for problem solving.In practical applications,the choice between the simulated annealing algorithm and Q-Learning depends on the characteristics and requirements of the problem.If the problem necessitates global search,the simulated annealing algorithm may be more suitable.If the problem can be modeled as a reinforcement learning problem,Q-Learning might be the better choice.This paper presents the practical application of Q-Learning to solve the problem,resulting in a Gantt chart for industrial product quality inspection scheduling,which provides reference for real-world industrial product quality scheduling.

scheduling algorithmQ-Leaningproduct quality inspectionsimulated annealing algorithm

任靖辉

展开 >

云南永昌硅业股份有限公司,云南昆明 650500

调度算法 Q-Leaning 产品质检 模拟退火算法

2024

自动化应用
重庆西南信息有限公司

自动化应用

影响因子:0.156
ISSN:1674-778X
年,卷(期):2024.65(6)
  • 16