首页|微铣削刀具磨损监测系统中麦克风阵列的消噪性能研究

微铣削刀具磨损监测系统中麦克风阵列的消噪性能研究

扫码查看
在切削加工过程中,基于切削加工声音信号的刀具状态监测系统容易受背景噪声的干扰,为确保监测系统的稳定性,提出使用麦克风阵列和维纳滤波来干扰噪声的方法.在实验过程中,采用直径为700 μm的微细铣刀对SK4 高碳钢工件进行切削加工,并在切削过程提供人工噪声源,然后利用麦克风阵列获取切削时的声音信号.针对获取的声音信号,结合麦克风阵列与维纳滤波器进行滤波处理.结果表明,麦克风阵列结合维纳滤波能有效改善噪声对微刀具磨损监测系统的影响.此外,分析麦克风阵列排列方式对刀具磨损识别的性能影响,结果显示,环形阵列比直线阵列麦克风阵列系统能更有效地去除噪声,在一定频带宽度下选择适当的特征值,刀具磨损识别率可达到100%.
Research on Noise Reduction Performance of Microphone Array in Micro Milling Tool Wear Monitoring System
In the cutting process,the tool condition monitoring system based on cutting sound signals is prone to interference from background noise.To ensure the stability of the monitoring system,a method of using microphone arrays and Wiener filtering to suppress interference noise is proposed.During the experimental process,a micro milling cutter with a diameter of 700 μm was used to cut SK4 high carbon steel workpiece,and an artificial noise source was provided during the cutting process.Then,a microphone array was used to obtain the sound signal during cutting.Filter the obtained sound signal by combining a microphone array with a Wiener filter.The results show that the combination of microphone array and Wiener filtering can effectively improve the impact of noise on the micro tool wear monitoring system.In addition,analyzing the impact of microphone array arrangement on the performance of tool wear recognition,the results show that the circular array microphone array system can more effectively remove noise than the linear array microphone array system.By selecting appropriate feature values within a certain frequency band width,the tool wear recognition rate can reach 100%.

microphone arraytool wear monitoringmicro millingnoise reduction

邵思程、方坤礼

展开 >

衢州职业技术学院机电工程学院,浙江衢州 324000

麦克风阵列 刀具磨损监测 微铣削 消噪

衢州市科技计划指导性项目

2023ZD118

2024

自动化应用
重庆西南信息有限公司

自动化应用

影响因子:0.156
ISSN:1674-778X
年,卷(期):2024.65(6)
  • 10