自动化应用2024,Vol.65Issue(7) :180-182.DOI:10.19769/j.zdhy.2024.07.055

无线传感器网络中定位节点技术的改进与实验研究

Improvement and Experimental Research on Localization Node Technology in Wireless Sensor Networks

李婧
自动化应用2024,Vol.65Issue(7) :180-182.DOI:10.19769/j.zdhy.2024.07.055

无线传感器网络中定位节点技术的改进与实验研究

Improvement and Experimental Research on Localization Node Technology in Wireless Sensor Networks

李婧1
扫码查看

作者信息

  • 1. 山西职业技术学院,山西太原 030006
  • 折叠

摘要

定位节点技术中,SSO算法的搜索能力不平衡、收敛精度低,为此,提出一种混合策略的群居蜘蛛优化GSSO算法.经试验,与SSO算法相比,GSSO算法的最差、最优、平均覆盖率分别提升 8.48%、7.81%、7.91%;与wDESSO算法相比,GSSO算法的覆盖率分别提升 2.81%、2.59%、2.92%,这表明GSSO算法具有很好的寻优效果,且GSSO算法的平均WSN覆盖率更高.另外,基于GSSO的DV-Hop算法,未知节点的最小、最大定位误差分别为0.34 m、13.20 m,定位误差小,定位精确度高.

Abstract

In node localization technology,the search ability of SSO algorithm is imbalanced and the convergence accuracy is low.Therefore,a mixed strategy social spider optimization GSSO algorithm is proposed.Through experiments,compared with SSO algorithm,GSSO algorithm has improved the worst,best,and average coverage by 8.48%,7.81%,and 7.91%,respectively.and compared with the wDESSO algorithm,the coverage of the GSSO algorithm has increased by 2.81%,2.59%,and 2.92%,respectively.This indicates that the GSSO algorithm has good optimization performance,and the average WSN coverage of the GSSO algorithm is higher.In addition,based on the DV Hop algorithm of GSSO,the minimum and maximum positioning errors of unknown nodes are 0.34 m and 13.20 m,respectively,with small positioning errors and high positioning accuracy.

关键词

无线传感器网络/SSO算法/GSSO算法/定位节点

Key words

wireless sensor network/SSO algorithm/GSSO algorithm/location node

引用本文复制引用

出版年

2024
自动化应用
重庆西南信息有限公司

自动化应用

影响因子:0.156
ISSN:1674-778X
参考文献量5
段落导航相关论文