首页|基于深度学习的MLP-GRU复合模型简答题评分系统的设计

基于深度学习的MLP-GRU复合模型简答题评分系统的设计

扫码查看
简答题自动评分(ASAG)在减轻教师负担和实现教育数字化方面有重要意义.为解决简答题自动评分模型考虑角度单一的问题,结合深度学习技术,以BERT模型为基础,融合感知机(MLP)和门控循环单元(GRU),建立了一种MLP-GRU的简答题自动评分模型.该模型同步考虑标准答案和学生答案之间的蕴含关系和相似性,实现对学生答案的多角度综合评估.首先,运用BERT模型进行学生答案的特征提取,为后续评分过程提供了丰富的语义信息.随后,引入了感知机和GRU模型,分别结合BERT输出,以计算与标准答案之间的文本蕴含和文本相似度评分,确保考虑答案的流畅性和逻辑性.最终,融合文本蕴含评分、文本相似度评分,得出最终评分结果.结果显示,该模型的均方根误差为0.266,Kappa系数为0.969,F1-分数为0.778,说明模型评分与人工评分具有高度一致性.
Design of MLP-GRU Composite Model Short Answer Grading System Based on Deep Learning
Automatic short answer grading(ASAG)plays a crucial role in alleviating the burden on educators and advancing educational digitization.To address the limitations of existing ASAG models in considering multiple aspects of short answer responses,this paper leverages deep learning techniques,using the BERT model as a foundation,to integrate a Multilayer Perceptron(MLP)and Gated Recurrent Unit(GRU),establishing an MLP-GRU based ASAG model.This model synchronously considers the entailment and similarity between standard answers and student responses,enabling a comprehensive evaluation of student answers from various angles.Initially,the BERT model is employed for feature extraction from student responses,providing rich semantic information for subsequent grading processes.Subsequently,the Perceptron and GRU models are introduced,each combined with the BERT output,to compute textual entailment and textual similarity scores concerning standard answers.This approach ensures the assessment takes into account the fluency and logical coherence of responses.Finally,the textual entailment and textual similarity scores are merged to produce the ultimate grading result.The results show that the root-mean-square error of the model is 0.266,the Kappa coefficient is 0.969,and the F1-score is 0.778,indicating that the model score is highly consistent with the manual score.

natural language processingautomatic short answer gradingBERT modeleducational assessment

廖石宝、陈强

展开 >

江西理工大学电气工程与自动化学院,江西赣州 341000

自然语言处理 简答题自动评分 BERT模型 教育评估

2024

自动化应用
重庆西南信息有限公司

自动化应用

影响因子:0.156
ISSN:1674-778X
年,卷(期):2024.65(8)
  • 21