首页|基于深度学习的地下空间机电设备智能维保系统的设计与应用

基于深度学习的地下空间机电设备智能维保系统的设计与应用

扫码查看
设计了一种基于深度学习的地下空间机电设备智能维保系统.该系统采用堆叠降噪自编码器作为核心的故障检测模型,通过学习设备运行数据的内在规律,以实现对潜在故障的有效检测,基于检测结果及时对机电设备实施维护措施.结果表明,该系统在各种地下空间机电设备的故障检测任务上呈现了良好的性能,具有较高的应用潜力.
Design and Application of Intelligent Maintenance System for Mechanical and Electrical Equipment in Underground Space Based on Deep Learning
An intelligent maintenance system for electromechanical equipment in underground space based on deep learning is designed.The system uses stacked noise reduction self encoder as the core of the fault detection model,through learning the inherent law of equipment operation data,to achieve effective detection of potential faults,and timely implement maintenance measures for electromechanical equipment based on the detection results.The results show that the system has good performance in the fault detection task of various underground space electromechanical equipment,and has high application potential.

deep learningintelligent maintenanceauto-encoder

司贤举

展开 >

金肯职业技术学院,江苏南京 210000

深度学习 智能维保 自编码器

江苏地下空间智慧运维工程技术研究开发中心开放课题

jsdxkjzh-2023-35

2024

自动化应用
重庆西南信息有限公司

自动化应用

影响因子:0.156
ISSN:1674-778X
年,卷(期):2024.65(9)
  • 5