首页|综采工作面采煤机故障监测诊断系统的设计与应用

综采工作面采煤机故障监测诊断系统的设计与应用

扫码查看
综采工作面采煤机截割部是煤炭生产的重要组成部分,具有较高的故障频率,且其维护活动成本高、耗时长.煤炭企业迫切需要一种有效的采煤机截割部故障监测系统.针对此问题,将综合重要度(IIM)引入故障树分析方法中,以识别采煤机截割部的薄弱环节.开发了一种基于IIM的故障树分析方法的监测诊断系统,以确定采煤机截割部的关键故障.以XX煤矿MG400/930-WD型采煤机为例,通过IIM排序,可确定轴承磨损为关键故障原因.为验证所提方法的有效性,采用径向条形图分析了 4 种重要性测度的相对值分布,并通过平均精度评价了不同排序的准确性.结果表明,IIM能明确区分底事件的相对重要性,IIM排序的平均准确率为 94.52%.因此,所提方法能准确有效地识别关键故障原因,且有限的资源应优先考虑IIM较高的底事件.
Design and Application of Fault Monitoring and Diagnosis System for Coal Mining Machine in Comprehensive Mining Face
The cutting section of the coal mining machine in the fully mechanized mining face is an important component of coal production,with a high frequency of failures,and its maintenance activities are costly and time-consuming.Coal enterprises urgently need an effective fault monitoring system for the cutting part of the shearer.To address this issue,the integrated importance(IIM)is introduced into the fault tree analysis method to identify weak links in the cutting section of the coal mining machine.A monitoring and diagnostic system based on IIM fault tree analysis method has been developed to identify key faults in the cutting section of the coal mining machine.Taking the MG400/930-WD coal mining machine of XX coal mine as an example,bearing wear can be determined as the key cause of failure through IIM sorting.To verify the effectiveness of the proposed method,a radial bar chart was used to analyze the relative value distribution of four importance measures,and the accuracy of different rankings was evaluated through average accuracy.The results indicate that IIM can clearly distinguish the relative importance of bottom events,and the average accuracy of IIM ranking is 94.52%.Therefore,the proposed method can accurately and effectively identify the causes of key faults,and limited resources should prioritize the bottom events with higher IIM.

coal mining machine cutting sectionfault tree modelcomprehensive importance measurementaverage accuracy mean

刘晓强

展开 >

山西煤炭运销集团泰山隆安煤业有限公司,山西忻州 036603

采煤机截割部 故障树模型 综合重要性测度 平均精度均值

2024

自动化应用
重庆西南信息有限公司

自动化应用

影响因子:0.156
ISSN:1674-778X
年,卷(期):2024.65(9)
  • 7