首页|矿用皮带输送机智能巡检机器人系统设计

矿用皮带输送机智能巡检机器人系统设计

扫码查看
针对矿用皮带机传统工人巡检方式存在的工人劳动强度大、巡检效率低、检测结果不可靠以及事故隐患难以及时排查等问题,在分析矿用皮带输送机常见故障和特征识别机理的基础上,提出了矿用皮带机智能巡检机器人系统.首先,采用模块化驱动设计,使得巡检机器人系统具有体积小、结构紧凑和爬坡度大等优点.其次,对硬件系统选型和软件算法进行编程,应用红外热成像和高清视频技术精准识别皮带输送机打滑、跑偏、纵撕和托辊损坏等异常.最后,采用数据智能处理算法将现场采集的视频、声音和温度等物理信号集成回传到上位机监控系统,对异常进行自动报警并生成历史记录.现场应用表明,智能巡检机器人系统对托辊异常的识别仅用时 2.83 s,故障识别准确率高达98.7%,取得了满意的应用结果.
Design of Intelligent Inspection Robot System for Mining Belt Conveyor
In view of the traditional mining belt workers inspec tion way workers labor intensity,low inspection efficiency,unreliable test results and accidents to screen,this paper analyzes the mining belt conveyor common fault and feature identification mechanism,put forward the mining belt conveyor intelligent inspection robot system.Firstly,adopting a modular driving design makes the inspection robot system have advantages such as small volume,compact structure,and large climbing slope.Secondly,hardware system selection and software algorithm programming are carried out,using infrared thermal imaging and high-definition video technology to accurately identify anomalies such as belt conveyor slipping,deviation,longitudinal tearing,and roller damage.Finally,using intelligent data processing algorithms,the physical signals such as video,sound,and temperature collected on site are integrated and transmitted back to the upper computer monitoring system,which automatically alarms for anomalies and generates historical records.On site applications have shown that the intelligent inspection robot system only takes 2.83 s to identify abnormal rollers,with a fault recognition accuracy of 98.7%,achieving satisfactory application results.

coal minebelt conveyorintelligent inspectionremote operation and maintenancefault diagnosis

闫培培

展开 >

霍州煤电集团沁安煤电有限责任公司,山西长治 046000

煤矿 皮带输送机 智能巡检 远程运维 故障诊断

2024

自动化应用
重庆西南信息有限公司

自动化应用

影响因子:0.156
ISSN:1674-778X
年,卷(期):2024.65(9)
  • 8