首页|基于自适应机器学习的电力系统故障检测方法

基于自适应机器学习的电力系统故障检测方法

扫码查看
为对电力系统进行故障检测,提出了一种基于循环神经网络(RNN)的电力系统故障检测方法,并引入Adam优化算法进行网络模型优化.首先介绍了基于RNN模型电力系统故障检测的整体框架,然后研究了RNN的基本结构,包括输入、隐藏状态、权重矩阵等.为进一步优化模型,引入了Adam优化,该方法能通过自适应学习率的调整提高模型的鲁棒性和泛化能力.结果表明,Adam优化算法对模型性能的改进具有显著作用,与原模型相比,所提方法在准确率、召回率和F1分数上均显著提升,是电力系统故障检测中的一种先进且有效的方法.
Power System Fault Detection Method Based on Adaptive Machine Learning
A power system fault detection method based on recurrent neural network(RNN)is proposed for fault detection in power systems,and the Adam optimization algorithm is introduced for network model optimization.Firstly,the overall framework of power system fault detection based on RNN model was introduced,and then the basic structure of RNN was studied,including input,hidden state,weight matrix,etc.To further optimize the model,Adam optimization was introduced,which can improve the robustness and generalization ability of the model by adjusting the adaptive learning rate.The results show that the Adam optimization algorithm has a significant effect on improving the performance of the model.Compared with the original model,the proposed method significantly improves accuracy,recall,and F1 score,making it an advanced and effective method in power system fault detection.

power systemrecurrent neural networkAdam optimization algorithm

王青梅

展开 >

青岛市技师学院,山东青岛 266000

电力系统 循环神经网络 Adam优化算法

2024

自动化应用
重庆西南信息有限公司

自动化应用

影响因子:0.156
ISSN:1674-778X
年,卷(期):2024.65(9)
  • 10