首页|基于深度学习的主动配电网分布式能量管理与优化研究

基于深度学习的主动配电网分布式能量管理与优化研究

扫码查看
提出了一种基于图神经网络模型的深度学习方法,旨在进行主动配电网分布式能量管理与优化.该模型将电源和负载设备视为图的节点,电力流动路径视作图的边,从而充分挖掘并利用电网的复杂结构信息.结果表明,该方法在能量损失、约束满足率、稳定性和计算时间等指标上表现出显著优势,为未来电网智能化管理提供了新的思路.
Research on Distributed Energy Management and Optimization of Active Distribution Network Based on Deep Learning
This paper proposes a deep learning method based on graph neural network models,aiming to achieve distributed energy management and optimization in active distribution networks.This model considers power and load devices as nodes in the graph,and the power flow path as edges of the graph,thus fully mining and utilizing the complex structural information of the power grid.The results show that the method proposed in this paper exhibits significant advantages in indicators such as energy loss,constraint satisfaction rate,stability,and calculation time,providing new ideas for future intelligent management of power grids.

graph neural networkactive distribution networkdeep learning method

刘宇刚、李顺超、王诚舒

展开 >

贵州师范大学机械与电气工程学院,贵州贵阳 550025

图神经网络 主动配电网 深度学习法

贵州省科技计划(2023)

黔科合基础-ZK[2023]一般262

2024

自动化应用
重庆西南信息有限公司

自动化应用

影响因子:0.156
ISSN:1674-778X
年,卷(期):2024.65(9)
  • 7