首页|海上用电设备引发低频振荡的MEEMD-TEO-HT法模态参数辨识

海上用电设备引发低频振荡的MEEMD-TEO-HT法模态参数辨识

扫码查看
海上用电设施的增加会进一步弱化电力网络中的弱阻尼振荡模式,增大系统无法稳定运行的风险,严重时可能导致局部系统的崩溃.针对以上问题,提出了一种基于海上用电设施引起低频振荡的MEEMD-TEO-HT的模态参数辨识法.首先,采用集合经验分解法(MEEMD)分解存在噪声干扰的含噪信,获取多个分解小信号与噪声干扰信号;然后,采用TEO指标筛选关键分量,找出对系统振荡起主要作用的小信号分量;最后,根据希尔伯特(HT)变换,解析关键小信号,得到信号的相关振荡参数,以获取引起系统振荡的弱阻尼模式,为后续采取措施抑制振荡提供重要依据.通过测试信号与仿真系统模型,模拟接入海上用电设备,结果显示,设备接入时,电力网络会受到负荷冲击,引发低频振荡事故,证明了所提方法的有效性与可行性.
Modal Parameter Identification of MEEMD-TEO-HT Method for Low-Frequency Oscillation Induced by Offshore Electrical Equipment
The increase of offshore power facilities will further weaken the weak damping oscillation mode in the power network,increase the risk of unstable system operation,and in severe cases,may lead to local system collapse.A modal parameter identification method based on MEEMD-TEO-HT for low-frequency oscillations caused by offshore power facilities is proposed to address the above issues.Firstly,the set empirical decomposition method(MEEMD)is used to decompose noisy signals with noise interference,obtaining multiple decomposed small signals and noise interference signals.Subsequently,the TEO index is used to screen key components and identify the small signal components that play a major role in system oscillation.Finally,based on the Hilbert(HT)transform,key small signals are analyzed to obtain the relevant oscillation parameters of the signal,in order to obtain the weak damping mode that causes system oscillation and provide important basis for subsequent measures to suppress oscillation.By testing signals and simulating system models,simulating the connection of offshore electrical equipment,the results show that when the equipment is connected,the power network will be affected by load shocks,leading to low-frequency oscillation accidents,proving the effectiveness and feasibility of the proposed method.

electric power systemensemble empirical mode decompositionscreening indexdecomposition componentlow-frequency oscillation

丁智华、林超群、孙玉波、罗允忠

展开 >

国网福建省电力有限公司宁德供电公司,福建宁德 352100

电力系统 集合经验模态分解 筛选指标 分解分量 低频振荡

2024

自动化应用
重庆西南信息有限公司

自动化应用

影响因子:0.156
ISSN:1674-778X
年,卷(期):2024.65(10)